A generalized deep learning model to detect and classify volcano seismicity

Saved in:
Bibliographic Details
Title: A generalized deep learning model to detect and classify volcano seismicity
Authors: David Fee, Darren Tan, John Lyons, Mariangela Sciotto, Andrea Cannata, Alicia Hotovec-Ellis, Társilo Girona, Aaron Wech, Diana Roman, Matthew Haney, Silvio De Angelis
Source: Volcanica, Vol 8, Iss 1, Pp 305-323 (2025)
Publisher Information: Volcanica, 2025.
Publication Year: 2025
Subject Terms: Machine Learning, QE1-996.5, Volcano Seismicity, machine learning, Explosion, Tremor, volcano seismicity, Geology, explosion, tremor
Description: Volcano seismicity is often detected and classified based on its spectral properties. However, the wide variety of volcano seismic signals and increasing amounts of data make accurate, consistent, and efficient detection and classification challenging. Machine learning (ML) has proven very effective at detecting and classifying tectonic seismicity, particularly using Convolutional Neural Networks (CNNs) and leveraging labeled datasets from regional seismic networks. Progress has been made applying ML to volcano seismicity, but efforts have typically been focused on a single volcano and are often hampered by the limited availability of training data. We build on the method of Tan et al. [2024] (10.1029/2024JB029194) to generalize a spectrogram-based CNN termed the VOlcano Infrasound and Seismic Spectrogram Neural Network (VOISS-Net) to detect and classify volcano seismicity at any volcano. We use a diverse training dataset of over 270,000 spectrograms from multiple volcanoes: Pavlof, Semisopochnoi, Tanaga, Takawangha, and Redoubt volcanoes\replaced (Alaska, USA); Mt. Etna (Italy); and Kīlauea, Hawai`i (USA). These volcanoes present a wide range of volcano seismic signals, source-receiver distances, and eruption styles. Our generalized VOISS-Net model achieves an accuracy of 87 % on the test set. We apply this model to continuous data from several volcanoes and eruptions included within and outside our training set, and find that multiple types of tremor, explosions, earthquakes, long-period events, and noise are successfully detected and classified. The model occasionally confuses transient signals such as earthquakes and explosions and misclassifies seismicity not included in the training dataset (e.g. teleseismic earthquakes). We envision the generalized VOISS-Net model to be applicable in both research and operational volcano monitoring settings.
Document Type: Article
File Description: application/pdf
ISSN: 2610-3540
DOI: 10.30909/vol/rjss1878
Access URL: https://doaj.org/article/1bdabea9f17c4ec8b3ffb7070853019c
https://hdl.handle.net/20.500.11769/678729
https://doi.org/10.30909/vol/rjss1878
Rights: CC BY
Accession Number: edsair.doi.dedup.....dbdf90daefa437862d2b229ae6c76a35
Database: OpenAIRE
Description
Abstract:Volcano seismicity is often detected and classified based on its spectral properties. However, the wide variety of volcano seismic signals and increasing amounts of data make accurate, consistent, and efficient detection and classification challenging. Machine learning (ML) has proven very effective at detecting and classifying tectonic seismicity, particularly using Convolutional Neural Networks (CNNs) and leveraging labeled datasets from regional seismic networks. Progress has been made applying ML to volcano seismicity, but efforts have typically been focused on a single volcano and are often hampered by the limited availability of training data. We build on the method of Tan et al. [2024] (10.1029/2024JB029194) to generalize a spectrogram-based CNN termed the VOlcano Infrasound and Seismic Spectrogram Neural Network (VOISS-Net) to detect and classify volcano seismicity at any volcano. We use a diverse training dataset of over 270,000 spectrograms from multiple volcanoes: Pavlof, Semisopochnoi, Tanaga, Takawangha, and Redoubt volcanoes\replaced (Alaska, USA); Mt. Etna (Italy); and Kīlauea, Hawai`i (USA). These volcanoes present a wide range of volcano seismic signals, source-receiver distances, and eruption styles. Our generalized VOISS-Net model achieves an accuracy of 87 % on the test set. We apply this model to continuous data from several volcanoes and eruptions included within and outside our training set, and find that multiple types of tremor, explosions, earthquakes, long-period events, and noise are successfully detected and classified. The model occasionally confuses transient signals such as earthquakes and explosions and misclassifies seismicity not included in the training dataset (e.g. teleseismic earthquakes). We envision the generalized VOISS-Net model to be applicable in both research and operational volcano monitoring settings.
ISSN:26103540
DOI:10.30909/vol/rjss1878