Determination of emissivity profiles using a Bayesian data-driven approach

Gespeichert in:
Bibliographische Detailangaben
Titel: Determination of emissivity profiles using a Bayesian data-driven approach
Autoren: Luca Sgheri, Cristina Sgattoni, Chiara Zugarini
Quelle: Mathematics and Computers in Simulation. 229:512-524
Publication Status: Preprint
Verlagsinformationen: Elsevier BV, 2025.
Publikationsjahr: 2025
Schlagwörter: FOS: Computer and information sciences, FORUM, Far infrared, Emissivity retrieval, CAMEL database, 0207 environmental engineering, Surface spectral emissivity, Far-infrared (FIR) radiation, Atmospheric modeling, Remote sensing, Radiative transfer models, Climate monitoring, Infrared spectroscopy, Emissivity retrieval algorithms, Earth observation missions, Spectral analysis, Optimal Estimation, FORUM, Far Infrared, Emissivity retrieval, CAMEL database, Applications (stat.AP), 02 engineering and technology, 15. Life on land, Statistics - Applications, 01 natural sciences, 0105 earth and related environmental sciences
Beschreibung: In this paper, we explore the determination of a spectral emissivity profile that closely matches real data, intended for use as an initial guess and/or a-priori information in a retrieval code. Our approach employs a Bayesian method that integrates the CAMEL (Combined ASTER MODIS Emissivity over Land) emissivity database with a land cover map. The solution is derived as a convex combination of high-resolution Huang profiles using the Bayesian framework. We test our method on IASI (Infrared Atmospheric Sounding Interferometer) data and find that it outperforms the linear spline interpolation of the CAMEL data.
Publikationsart: Article
Dateibeschreibung: application/pdf
Sprache: English
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2024.10.015
DOI: 10.48550/arxiv.2407.07113
Zugangs-URL: http://arxiv.org/abs/2407.07113
https://www.sciencedirect.com/science/article/abs/pii/S0378475424004051
https://hdl.handle.net/20.500.14243/520602
https://doi.org/10.1016/j.matcom.2024.10.015
Rights: Elsevier TDM
arXiv Non-Exclusive Distribution
CC BY NC ND
Dokumentencode: edsair.doi.dedup.....daef90bc3a3c96e30f66bd20a5aa3cfa
Datenbank: OpenAIRE
Beschreibung
Abstract:In this paper, we explore the determination of a spectral emissivity profile that closely matches real data, intended for use as an initial guess and/or a-priori information in a retrieval code. Our approach employs a Bayesian method that integrates the CAMEL (Combined ASTER MODIS Emissivity over Land) emissivity database with a land cover map. The solution is derived as a convex combination of high-resolution Huang profiles using the Bayesian framework. We test our method on IASI (Infrared Atmospheric Sounding Interferometer) data and find that it outperforms the linear spline interpolation of the CAMEL data.
ISSN:03784754
DOI:10.1016/j.matcom.2024.10.015