Rationality theorems for curvature invariants of 2-complexes

Gespeichert in:
Bibliographische Detailangaben
Titel: Rationality theorems for curvature invariants of 2-complexes
Autoren: Wilton, H
Weitere Verfasser: DSpace at Cambridge pro (8.1)
Quelle: Mathematische Annalen. 392:3765-3796
Publication Status: Preprint
Verlagsinformationen: Springer Science and Business Media LLC, 2025.
Publikationsjahr: 2025
Schlagwörter: Mathematics - Geometric Topology, 4901 Applied Mathematics, 4903 Numerical and Computational Mathematics, FOS: Mathematics, 49 Mathematical Sciences, 4904 Pure Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), 0101 mathematics, Mathematics - Group Theory, 01 natural sciences
Beschreibung: Let X be a finite, 2-dimensional cell complex. The curvature invariants $$\rho _\pm (X)$$ ρ ± ( X ) and $$\sigma _\pm (X)$$ σ ± ( X ) were defined in [13], and a programme of conjectures was outlined. Here, we prove the foundational result that the quantities $$\rho _\pm (X)$$ ρ ± ( X ) and $$\sigma _\pm (X)$$ σ ± ( X ) are the extrema of explicit rational linear-programming problems. As a result they are rational, realised, and can be computed algorithmically.
Publikationsart: Article
Dateibeschreibung: application/pdf; text/xml
Sprache: English
ISSN: 1432-1807
0025-5831
DOI: 10.1007/s00208-025-03177-8
DOI: 10.17863/cam.117937
DOI: 10.48550/arxiv.2210.09841
Zugangs-URL: http://arxiv.org/abs/2210.09841
Rights: CC BY
Dokumentencode: edsair.doi.dedup.....d990474ea9b3da1c9462ffce3b8c9a24
Datenbank: OpenAIRE
Beschreibung
Abstract:Let X be a finite, 2-dimensional cell complex. The curvature invariants $$\rho _\pm (X)$$ ρ ± ( X ) and $$\sigma _\pm (X)$$ σ ± ( X ) were defined in [13], and a programme of conjectures was outlined. Here, we prove the foundational result that the quantities $$\rho _\pm (X)$$ ρ ± ( X ) and $$\sigma _\pm (X)$$ σ ± ( X ) are the extrema of explicit rational linear-programming problems. As a result they are rational, realised, and can be computed algorithmically.
ISSN:14321807
00255831
DOI:10.1007/s00208-025-03177-8