Faithful Interpretation of Protein Structures through Weighted Persistent Homology Improves Evolutionary Distance Estimation
Saved in:
| Title: | Faithful Interpretation of Protein Structures through Weighted Persistent Homology Improves Evolutionary Distance Estimation |
|---|---|
| Authors: | Bou Dagher, Léa, Madern, Dominique, Malbos, Philippe, Brochier-Armanet, Céline |
| Contributors: | Thomas, Frank, Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Algèbre, géométrie, logique (AGL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA) |
| Source: | Mol Biol Evol |
| Publisher Information: | Oxford University Press (OUP), 2025. |
| Publication Year: | 2025 |
| Subject Terms: | protein 3D structure, [SDV]Life Sciences [q-bio], structural phylogeny, Molecular, 3D structures vectorization, [SDV] Life Sciences [q-bio], bio-topological marker, MESH: Protein Conformation, MESH: Evolution, indels, MESH: Proteins, MESH: Phylogeny, Brief Communications |
| Description: | Phylogenetic inference is mainly based on sequence analysis and requires reliable alignments. This can be challenging, especially when sequences are highly divergent. In this context, the use of three-dimensional protein structures is a promising alternative. In a recent study, we introduced an original topological data analysis method based on persistent homology to estimate the evolutionary distances from structures. The method was successfully tested on 518 protein families representing 22,940 predicted structures. However, as anticipated, the reliability of the estimated evolutionary distances was impacted by the quality of the predicted structures and the presence of indels in the proteins. This paper introduces a new topological descriptor, called bio-topological marker (BTM), which provides a more faithful description of the structures, a topological analysis for estimating evolutionary distances from BTMs, and a new weight-filtering method adapted to protein structures. These new developments significantly improve the estimation of evolutionary distances and phylogenies inferred from structures. |
| Document Type: | Article Other literature type |
| Language: | English |
| ISSN: | 1537-1719 0737-4038 |
| DOI: | 10.1093/molbev/msae271 |
| Access URL: | https://pubmed.ncbi.nlm.nih.gov/39761698 |
| Rights: | CC BY NC URL: http://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. |
| Accession Number: | edsair.doi.dedup.....d2e82fb18f7246345c318689700f98c8 |
| Database: | OpenAIRE |
| Abstract: | Phylogenetic inference is mainly based on sequence analysis and requires reliable alignments. This can be challenging, especially when sequences are highly divergent. In this context, the use of three-dimensional protein structures is a promising alternative. In a recent study, we introduced an original topological data analysis method based on persistent homology to estimate the evolutionary distances from structures. The method was successfully tested on 518 protein families representing 22,940 predicted structures. However, as anticipated, the reliability of the estimated evolutionary distances was impacted by the quality of the predicted structures and the presence of indels in the proteins. This paper introduces a new topological descriptor, called bio-topological marker (BTM), which provides a more faithful description of the structures, a topological analysis for estimating evolutionary distances from BTMs, and a new weight-filtering method adapted to protein structures. These new developments significantly improve the estimation of evolutionary distances and phylogenies inferred from structures. |
|---|---|
| ISSN: | 15371719 07374038 |
| DOI: | 10.1093/molbev/msae271 |
Full Text Finder
Nájsť tento článok vo Web of Science