Longitudinal and Transverse 1H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T
Uložené v:
| Názov: | Longitudinal and Transverse 1H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T |
|---|---|
| Autori: | Nasser Din, Rami, Venu, Aiswarya Chalikunnath, Rudszuck, Thomas, Vallet, Alicia, Favier, Adrien, Powell, Annie, Guthausen, Gisela, Ibrahim, Masooma, Krämer, Steffen |
| Prispievatelia: | Krämer, Steffen, Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Karlsruhe Institute of Technology = Karlsruher Institut für Technologie (KIT), Groupe de RMN biomoléculaire (IBS-NMR), Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA) |
| Zdroj: | Molecules Molecules, Vol 29, Iss 20, p 4956 (2024) Molecules, 29 (20), 4956 |
| Informácie o vydavateľovi: | MDPI AG, 2024. |
| Rok vydania: | 2024 |
| Predmety: | [PHYS]Physics [physics], lanthanide ions, nuclear magnetic resonance relaxation dispersion, paramagnetic relaxation enhancement, magnetic field stability, Physics, ddc:530, Organic chemistry, Article, Ultra-high magnetic fields, [PHYS] Physics [physics], QD241-441, magnetic field homogeneity, Nuclear magnetic resonance relaxation dispersion, Lanthanide ions, ultra-high magnetic fields, Paramagnetic relaxation enhancement PRE |
| Popis: | The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of 1H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln3+) can become very strong. Longitudinal and transverse 1H NMRD for Gd3+, Dy3+, Er3+ and Ho3+ were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the 1H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy3+, Er3+ and Ho3+. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions. |
| Druh dokumentu: | Article Other literature type |
| Popis súboru: | application/pdf |
| Jazyk: | English |
| ISSN: | 1420-3049 |
| DOI: | 10.3390/molecules29204956 |
| DOI: | 10.5445/ir/1000176133 |
| Prístupová URL adresa: | https://pubmed.ncbi.nlm.nih.gov/39459324 https://doaj.org/article/38bf5b57f1e5411283383bdec1a56012 |
| Rights: | CC BY |
| Prístupové číslo: | edsair.doi.dedup.....d2b32a8d2c4a4cc4131f562cc6342538 |
| Databáza: | OpenAIRE |
| Abstrakt: | The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of 1H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln3+) can become very strong. Longitudinal and transverse 1H NMRD for Gd3+, Dy3+, Er3+ and Ho3+ were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the 1H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy3+, Er3+ and Ho3+. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions. |
|---|---|
| ISSN: | 14203049 |
| DOI: | 10.3390/molecules29204956 |
Full Text Finder
Nájsť tento článok vo Web of Science