Simplicity of Lp-graph algebras

Uloženo v:
Podrobná bibliografie
Název: Simplicity of Lp-graph algebras
Autoři: Cortiñas, Guillermo, Montero, Diego, Rodríguez, María Eugenia
Zdroj: Journal of Operator Theory. 94:93-109
Publication Status: Preprint
Informace o vydavateli: Theta Foundation, 2025.
Rok vydání: 2025
Témata: Mathematics - Functional Analysis, 47L10, 46L55, 16G20, Mathematics - Operator Algebras, FOS: Mathematics, Operator Algebras (math.OA), Functional Analysis (math.FA)
Popis: For each finite p⩾1 and each countable directed graph E we consider the Leavitt path C-algebra L(E) and the Lp-operator graph algebra Op(E). We show that the (purely infinite) simplicity of Op(E) as a Banach algebra is equivalent to the (purely infinite) simplicity of L(E) as a ring.
Druh dokumentu: Article
ISSN: 1841-7744
0379-4024
DOI: 10.7900/jot.2023aug30.2459
DOI: 10.48550/arxiv.2307.05555
Přístupová URL adresa: http://arxiv.org/abs/2307.05555
Rights: arXiv Non-Exclusive Distribution
Přístupové číslo: edsair.doi.dedup.....ccd8a1f40d764e3de02fe304902beb61
Databáze: OpenAIRE
Popis
Abstrakt:For each finite p⩾1 and each countable directed graph E we consider the Leavitt path C-algebra L(E) and the Lp-operator graph algebra Op(E). We show that the (purely infinite) simplicity of Op(E) as a Banach algebra is equivalent to the (purely infinite) simplicity of L(E) as a ring.
ISSN:18417744
03794024
DOI:10.7900/jot.2023aug30.2459