Determination of Sialic Acid Isomers from Released N-Glycans Using Ion Mobility Spectrometry
Saved in:
| Title: | Determination of Sialic Acid Isomers from Released N-Glycans Using Ion Mobility Spectrometry |
|---|---|
| Authors: | Christian Manz, Montserrat Mancera-Arteu, Andreas Zappe, Emeline Hanozin, Lukasz Polewski, Estela Giménez, Victoria Sanz-Nebot, Kevin Pagel |
| Source: | Anal Chem Articles publicats en revistes (Enginyeria Química i Química Analítica) Dipòsit Digital de la UB instname Analytical Chemistry |
| Publisher Information: | American Chemical Society (ACS), 2022. |
| Publication Year: | 2022 |
| Subject Terms: | Ions, Biopolímers, Mass spectrometry, Carbohydrates, Orosomucoid, Chemical biology, N-Acetylneuraminic Acid, Espectrometria de masses, Biopolymers, Chemical structure, Polysaccharides, Ion Mobility Spectrometry, Sialic Acids, Humans, 500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften, Molecular structure |
| Description: | Complex carbohydrates are ubiquitous in nature and represent one of the major classes of biopolymers. They can exhibit highly diverse structures with multiple branched sites as well as a complex regio- and stereochemistry. A common way to analytically address this complexity is liquid chromatography (LC) in combination with mass spectrometry (MS). However, MS-based detection often does not provide sufficient information to distinguish glycan isomers. Ion mobility-mass spectrometry (IM-MS)─a technique that separates ions based on their size, charge, and shape─has recently shown great potential to solve this problem by identifying characteristic isomeric glycan features such as the sialylation and fucosylation pattern. However, while both LC-MS and IM-MS have clearly proven their individual capabilities for glycan analysis, attempts to combine both methods into a consistent workflow are lacking. Here, we close this gap and combine hydrophilic interaction liquid chromatography (HILIC) with IM-MS to analyze the glycan structures released from human alpha-1-acid glycoprotein (hAGP). HILIC separates the crude mixture of highly sialylated multi-antennary glycans, MS provides information on glycan composition, and IMS is used to distinguish and quantify α2,6- and α2,3-linked sialic acid isomers based on characteristic fragments. Further, the technique can support the assignment of antenna fucosylation. This feature mapping can confidently assign glycan isomers with multiple sialic acids within one LC-IM-MS run and is fully compatible with existing workflows for N-glycan analysis. |
| Document Type: | Article Other literature type |
| File Description: | application/pdf |
| Language: | English |
| ISSN: | 1520-6882 0003-2700 |
| DOI: | 10.1021/acs.analchem.2c00783 |
| DOI: | 10.17169/refubium-37314 |
| Access URL: | https://pubmed.ncbi.nlm.nih.gov/36121379 https://hdl.handle.net/2445/190701 http://hdl.handle.net/21.11116/0000-000B-2944-B http://hdl.handle.net/21.11116/0000-000B-37C5-9 http://hdl.handle.net/2445/190701 |
| Rights: | CC BY URL: http://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (http://creativecommons.org/licenses/by/4.0/). |
| Accession Number: | edsair.doi.dedup.....bbdbc70845672a4dd446bce4a2523d39 |
| Database: | OpenAIRE |
| Abstract: | Complex carbohydrates are ubiquitous in nature and represent one of the major classes of biopolymers. They can exhibit highly diverse structures with multiple branched sites as well as a complex regio- and stereochemistry. A common way to analytically address this complexity is liquid chromatography (LC) in combination with mass spectrometry (MS). However, MS-based detection often does not provide sufficient information to distinguish glycan isomers. Ion mobility-mass spectrometry (IM-MS)─a technique that separates ions based on their size, charge, and shape─has recently shown great potential to solve this problem by identifying characteristic isomeric glycan features such as the sialylation and fucosylation pattern. However, while both LC-MS and IM-MS have clearly proven their individual capabilities for glycan analysis, attempts to combine both methods into a consistent workflow are lacking. Here, we close this gap and combine hydrophilic interaction liquid chromatography (HILIC) with IM-MS to analyze the glycan structures released from human alpha-1-acid glycoprotein (hAGP). HILIC separates the crude mixture of highly sialylated multi-antennary glycans, MS provides information on glycan composition, and IMS is used to distinguish and quantify α2,6- and α2,3-linked sialic acid isomers based on characteristic fragments. Further, the technique can support the assignment of antenna fucosylation. This feature mapping can confidently assign glycan isomers with multiple sialic acids within one LC-IM-MS run and is fully compatible with existing workflows for N-glycan analysis. |
|---|---|
| ISSN: | 15206882 00032700 |
| DOI: | 10.1021/acs.analchem.2c00783 |
Nájsť tento článok vo Web of Science