A geological timescale for bacterial evolution and oxygen adaptation

Uloženo v:
Podrobná bibliografie
Název: A geological timescale for bacterial evolution and oxygen adaptation
Autoři: Davín, Adrián A., Woodcroft, Ben J., Soo, Rochelle M., Morel, Benoit, Murali, Ranjani, Schrempf, Dominik, Clark, James W., Álvarez-Carretero, Sandra, Boussau, Bastien, Moody, Edmund R. R., Szánthó, Lénárd L., Richy, Etienne, Pisani, Davide, Hemp, James, Fischer, Woodward W., Donoghue, Philip C. J., Spang, Anja, Hugenholtz, Philip, Williams, Tom A., Szöllősi, Gergely J.
Zdroj: Davín, A A, Woodcroft, B J, Soo, R M, Morel, B, Murali, R, Schrempf, D, Clark, J W, Álvarez-Carretero, S, Boussau, B, Moody, E R R, Szánthó, L L, Richy, E, Pisani, D, Hemp, J, Fischer, W W, Donoghue, P C J, Spang, A, Hugenholtz, P, Williams, T A & Szöllősi, G J 2025, 'A geological timescale for bacterial evolution and oxygen adaptation', Science (New York, N.Y.), vol. 388, no. 6742, eadp1853, pp. 1-12. https://doi.org/10.1126/science.adp1853
Davín, A A, Woodcroft, B J, Soo, R M, Morel, B, Murali, R, Schrempf, D, Clark, J W, Alvarez-Carretero, S, Boussau, B, Moody, E R R, Szantho, L, Richy, E M A M, Pisani, D, Hemp, J, Fischer, W, Donoghue, P C J, Spang, A, Hugenholtz, P, Williams, T & Szollosi, G J 2025, 'A geological timescale for bacterial evolution and oxygen adaptation', Science, vol. 388, no. 6742, eadp1853, pp. 1-12. https://doi.org/10.1126/science.adp1853
Informace o vydavateli: American Association for the Advancement of Science (AAAS), 2025.
Rok vydání: 2025
Témata: Oxygen, Machine Learning, Bacteria, Bacteria/metabolism, Cyanobacteria/genetics, Photosynthesis, Oxygen/metabolism, Cyanobacteria, Biological Evolution, Oxidation-Reduction, Adaptation, Physiological, Phylogeny
Popis: Microbial life has dominated Earth’s history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.
Druh dokumentu: Article
Popis souboru: application/pdf
Jazyk: English
ISSN: 1095-9203
0036-8075
DOI: 10.1126/science.adp1853
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/40179162
https://purehost.bath.ac.uk/ws/files/370955353/main_manuscript_file_adp1853.pdf
https://research-information.bris.ac.uk/en/publications/e3cd1a15-477b-46b1-a3b0-aa801173cfb3
https://hdl.handle.net/1983/e3cd1a15-477b-46b1-a3b0-aa801173cfb3
Přístupové číslo: edsair.doi.dedup.....b7c57e26127c3b3a676ff1c631daf8cf
Databáze: OpenAIRE
Popis
Abstrakt:Microbial life has dominated Earth’s history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.
ISSN:10959203
00368075
DOI:10.1126/science.adp1853