Pythagorean Theorem, Law of Sines and Law of Cosines: Alternative Proofs via shape Derivatives

Uložené v:
Podrobná bibliografia
Názov: Pythagorean Theorem, Law of Sines and Law of Cosines: Alternative Proofs via shape Derivatives
Autori: Lorenzo Cavallina
Zdroj: Mathematics Magazine. :1-6
Publication Status: Preprint
Informácie o vydavateľovi: Informa UK Limited, 2025.
Rok vydania: 2025
Predmety: Mathematics - History and Overview, History and Overview (math.HO), FOS: Mathematics
Popis: We provide an alternative unified approach for proving the Pythagorean theorem (in dimension $2$ and higher), the law of sines and the law of cosines, based on the concept of shape derivative. The idea behind the proofs is very simple: we translate a triangle along a specific direction and compute the resulting change in area. Equating the change in area to zero yields the statements of the three aforementioned theorems.
6 pages, 4 figures
Druh dokumentu: Article
Jazyk: English
ISSN: 1930-0980
0025-570X
DOI: 10.1080/0025570x.2025.2535929
DOI: 10.48550/arxiv.2309.16691
Prístupová URL adresa: http://arxiv.org/abs/2309.16691
Rights: CC BY
arXiv Non-Exclusive Distribution
Prístupové číslo: edsair.doi.dedup.....b0ef938fae2e71e5bd3c2cf605863994
Databáza: OpenAIRE
Popis
Abstrakt:We provide an alternative unified approach for proving the Pythagorean theorem (in dimension $2$ and higher), the law of sines and the law of cosines, based on the concept of shape derivative. The idea behind the proofs is very simple: we translate a triangle along a specific direction and compute the resulting change in area. Equating the change in area to zero yields the statements of the three aforementioned theorems.<br />6 pages, 4 figures
ISSN:19300980
0025570X
DOI:10.1080/0025570x.2025.2535929