Podrobná bibliografie
| Název: |
An extension of Herstein's theorem on Banach algebra |
| Autoři: |
Abu Zaid Ansari, Suad Alrehaili, Faiza Shujat |
| Zdroj: |
AIMS Mathematics, Vol 9, Iss 2, Pp 4109-4117 (2024) |
| Informace o vydavateli: |
American Institute of Mathematical Sciences (AIMS), 2024. |
| Rok vydání: |
2024 |
| Témata: |
algebraic identities, QA1-939, generalized left derivation, 0101 mathematics, semiprime ring, 01 natural sciences, Mathematics, banach algebra |
| Popis: |
Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented. |
| Druh dokumentu: |
Article |
| ISSN: |
2473-6988 |
| DOI: |
10.3934/math.2024201 |
| Přístupová URL adresa: |
https://doaj.org/article/e2c208914f3e4a38877366c17474b0f0 |
| Přístupové číslo: |
edsair.doi.dedup.....b0a6347bf4fbc52082ae39bb96525506 |
| Databáze: |
OpenAIRE |