Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations
Saved in:
| Title: | Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations |
|---|---|
| Authors: | Starnoni, M., Sanchez‐Vila, X., Recalcati, C., Riva, M., Guadagnini, A. |
| Contributors: | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània |
| Source: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Geophysical Research Letters, Vol 51, Iss 16, Pp n/a-n/a (2024) Geophysical Research Letters |
| Publisher Information: | American Geophysical Union (AGU), 2024. |
| Publication Year: | 2024 |
| Subject Terms: | Minerals, atomic force microscopy, Chemical weathering, QC801-809, Geophysics. Cosmic physics, Computational geophysics, reactive transport modeling, Reactive transport modeling, mineral dissolution, chemical weathering, Mineral dissolution, Atomic force microscopy, Àrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia subterrània, computational geophysics |
| Description: | We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. |
| Document Type: | Article |
| File Description: | application/pdf |
| Language: | English |
| ISSN: | 1944-8007 0094-8276 |
| DOI: | 10.1029/2024gl110030 |
| Access URL: | https://doaj.org/article/24924ca156c34acba154ece97b6faaf1 |
| Rights: | CC BY |
| Accession Number: | edsair.doi.dedup.....b0420dc350ac26f35cd8bf9463ab3888 |
| Database: | OpenAIRE |
| Abstract: | We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution. |
|---|---|
| ISSN: | 19448007 00948276 |
| DOI: | 10.1029/2024gl110030 |
Full Text Finder
Nájsť tento článok vo Web of Science