Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations

Saved in:
Bibliographic Details
Title: Process Modeling of Mineral Dissolution From Nano‐Scale Surface Topography Observations
Authors: Starnoni, M., Sanchez‐Vila, X., Recalcati, C., Riva, M., Guadagnini, A.
Contributors: Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
Source: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Geophysical Research Letters, Vol 51, Iss 16, Pp n/a-n/a (2024)
Geophysical Research Letters
Publisher Information: American Geophysical Union (AGU), 2024.
Publication Year: 2024
Subject Terms: Minerals, atomic force microscopy, Chemical weathering, QC801-809, Geophysics. Cosmic physics, Computational geophysics, reactive transport modeling, Reactive transport modeling, mineral dissolution, chemical weathering, Mineral dissolution, Atomic force microscopy, Àrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia subterrània, computational geophysics
Description: We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution.
Document Type: Article
File Description: application/pdf
Language: English
ISSN: 1944-8007
0094-8276
DOI: 10.1029/2024gl110030
Access URL: https://doaj.org/article/24924ca156c34acba154ece97b6faaf1
Rights: CC BY
Accession Number: edsair.doi.dedup.....b0420dc350ac26f35cd8bf9463ab3888
Database: OpenAIRE
Description
Abstract:We present an innovative approach that combines a unique real‐time data set documenting absolute dissolution rates of a calcite crystal with an original reactive transport model tailored to the analysis of the dynamics of nano‐scale mineral dissolution processes. Providing robust and physically based fundamental understanding on the kinetics of mineral dissolution is at the core of various geo‐engineered strategies to quantify chemical weathering patterns across diverse spatial and temporal scales. Here, we rely on data obtained through Atomic Force Microscopy. We provide a mathematical framework to describe three‐dimensional dynamics of the mineral surface topography, and show convergence of the numerical approach for vertical grid spacing down to sub‐nm resolution.
ISSN:19448007
00948276
DOI:10.1029/2024gl110030