Large language models surpass human experts in predicting neuroscience results

Gespeichert in:
Bibliographische Detailangaben
Titel: Large language models surpass human experts in predicting neuroscience results
Autoren: Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K. Nejad, Felipe Yáñez, Bati Yilmaz, Kangjoo Lee, Alexandra O. Cohen, Valentina Borghesani, Anton Pashkov, Daniele Marinazzo, Jonathan Nicholas, Alessandro Salatiello, Ilia Sucholutsky, Pasquale Minervini, Sepehr Razavi, Roberta Rocca, Elkhan Yusifov, Tereza Okalova, Nianlong Gu, Martin Ferianc, Mikail Khona, Kaustubh R. Patil, Pui-Shee Lee, Rui Mata, Nicholas E. Myers, Jennifer K. Bizley, Sebastian Musslick, Isil Poyraz Bilgin, Guiomar Niso, Justin M. Ales, Michael Gaebler, N. Apurva Ratan Murty, Leyla Loued-Khenissi, Anna Behler, Chloe M. Hall, Jessica Dafflon, Sherry Dongqi Bao, Bradley C. Love
Weitere Verfasser: Economic and Social Research Council (UK), Microsoft, Apollo - University of Cambridge Repository, University of St Andrews.School of Psychology and Neuroscience, University of St Andrews.Institute of Behavioural and Neural Sciences
Quelle: Nat Hum Behav
Digital.CSIC. Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
arXiv
Nature human behaviour, vol. 9, no. 2, pp. 305-315
Nature human behaviour 9(2), 305-315 (2025). doi:10.1038/s41562-024-02046-9
NATURE HUMAN BEHAVIOUR
Luo, X, Rechardt, A, Sun, G, Nejad, K K, Yáñez, F, Yilmaz, B, Lee, K, Cohen, A O, Borghesani, V, Pashkov, A, Marinazzo, D, Nicholas, J, Salatiello, A, Sucholutsky, I, Minervini, P, Razavi, S, Rocca, R, Yusifov, E, Okalova, T, Gu, N, Ferianc, M, Khona, M, Patil, K R, Lee, P S, Mata, R, Myers, N E, Bizley, J K, Musslick, S, Bilgin, I P, Niso, G, Ales, J M, Gaebler, M, Ratan Murty, N A, Loued-Khenissi, L, Behler, A, Hall, C M, Dafflon, J, Bao, S D & Love, B C 2025, 'Large language models surpass human experts in predicting neuroscience results', Nature Human Behaviour, vol. 9, no. 2, pp. 305-315. https://doi.org/10.1038/s41562-024-02046-9
Publication Status: Preprint
Verlagsinformationen: Springer Science and Business Media LLC, 2024.
Publikationsjahr: 2024
Schlagwörter: FOS: Computer and information sciences, 0301 basic medicine, Technology and Engineering, Scientific community, Social Psychology, Computer Science - Artificial Intelligence, Social Sciences, Experimental and Cognitive Psychology, Article, neuroscience, Behavioral Neuroscience, 03 medical and health sciences, Large Language Models, Medicine and Health Sciences, Humans, large language models, Ensure healthy lives and promote well-being for all at all ages, Language, 0303 health sciences, Neurosciences, Brain, DAS, artificial intelligence, Brain/physiology, Brain/diagnostic imaging, Artificial Intelligence (cs.AI), Quantitative Biology - Neurons and Cognition, FOS: Biological sciences, Neurons and Cognition (q-bio.NC), Forecasting, Neuroscience
Beschreibung: Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. Here, to evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs indicated high confidence in their predictions, their responses were more likely to be correct, which presages a future where LLMs assist humans in making discoveries. Our approach is not neuroscience specific and is transferable to other knowledge-intensive endeavours.
Publikationsart: Article
Other literature type
Dateibeschreibung: application/pdf; application/zip; text/xml
Sprache: English
ISSN: 2397-3374
DOI: 10.1038/s41562-024-02046-9
DOI: 10.48550/arxiv.2403.03230
DOI: 10.34734/fzj-2025-02220
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/39604572
http://arxiv.org/abs/2403.03230
http://hdl.handle.net/10261/395833
https://api.elsevier.com/content/abstract/scopus_id/85203189734
http://hdl.handle.net/21.11116/0000-000F-68CD-6
http://hdl.handle.net/21.11116/0000-000F-68CF-4
http://hdl.handle.net/21.11116/0000-000F-68D1-0
https://serval.unil.ch/notice/serval:BIB_FF43875B71A5
https://serval.unil.ch/resource/serval:BIB_FF43875B71A5.P001/REF.pdf
http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_FF43875B71A54
https://juser.fz-juelich.de/record/1041321
http://hdl.handle.net/1854/LU-01JDRY0F05A02KS70NW5GRW0DB
http://doi.org/10.1038/s41562-024-02046-9
https://biblio.ugent.be/publication/01JDRY0F05A02KS70NW5GRW0DB
https://biblio.ugent.be/publication/01JDRY0F05A02KS70NW5GRW0DB/file/01JDRY4W5S0BFNHY0JQ4NC8X07
http://www.scopus.com/inward/record.url?scp=85203189734&partnerID=8YFLogxK
https://hdl.handle.net/10023/31983
Rights: CC BY
Dokumentencode: edsair.doi.dedup.....af923d6f99a44c7e227f4ec4bb986c9b
Datenbank: OpenAIRE
Beschreibung
Abstract:Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. Here, to evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs indicated high confidence in their predictions, their responses were more likely to be correct, which presages a future where LLMs assist humans in making discoveries. Our approach is not neuroscience specific and is transferable to other knowledge-intensive endeavours.
ISSN:23973374
DOI:10.1038/s41562-024-02046-9