Whitney approximation: domains and bounds

Uložené v:
Podrobná bibliografia
Názov: Whitney approximation: domains and bounds
Autori: Aschenbrenner, Matthias
Zdroj: Complex Variables and Elliptic Equations. :1-28
Publication Status: Preprint
Informácie o vydavateľovi: Informa UK Limited, 2025.
Rok vydania: 2025
Predmety: Complex Variables, Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Complex Variables (math.CV)
Popis: We investigate properties of holomorphic extensions in the one-variable case of Whitney's Approximation Theorem on intervals. Improving a result of Gauthier-Kienzle, we construct tangentially approximating functions which extend holomorphically to domains of optimal size. For approximands on unbounded closed intervals, we also bound the growth of holomorphic extensions, in the spirit of Arakelyan, Bernstein, Keldych, and Kober.
23 pp.; Complex Var. Elliptic Equ., to appear
Druh dokumentu: Article
Jazyk: English
ISSN: 1747-6941
1747-6933
DOI: 10.1080/17476933.2025.2549398
DOI: 10.48550/arxiv.2504.12839
Prístupová URL adresa: http://arxiv.org/abs/2504.12839
Rights: CC BY NC ND
arXiv Non-Exclusive Distribution
Prístupové číslo: edsair.doi.dedup.....a853b9f21a5dab1a0b0d68fa42327b6c
Databáza: OpenAIRE
Popis
Abstrakt:We investigate properties of holomorphic extensions in the one-variable case of Whitney's Approximation Theorem on intervals. Improving a result of Gauthier-Kienzle, we construct tangentially approximating functions which extend holomorphically to domains of optimal size. For approximands on unbounded closed intervals, we also bound the growth of holomorphic extensions, in the spirit of Arakelyan, Bernstein, Keldych, and Kober.<br />23 pp.; Complex Var. Elliptic Equ., to appear
ISSN:17476941
17476933
DOI:10.1080/17476933.2025.2549398