Whitney approximation: domains and bounds
Gespeichert in:
| Titel: | Whitney approximation: domains and bounds |
|---|---|
| Autoren: | Aschenbrenner, Matthias |
| Quelle: | Complex Variables and Elliptic Equations. :1-28 |
| Publication Status: | Preprint |
| Verlagsinformationen: | Informa UK Limited, 2025. |
| Publikationsjahr: | 2025 |
| Schlagwörter: | Complex Variables, Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Complex Variables (math.CV) |
| Beschreibung: | We investigate properties of holomorphic extensions in the one-variable case of Whitney's Approximation Theorem on intervals. Improving a result of Gauthier-Kienzle, we construct tangentially approximating functions which extend holomorphically to domains of optimal size. For approximands on unbounded closed intervals, we also bound the growth of holomorphic extensions, in the spirit of Arakelyan, Bernstein, Keldych, and Kober. 23 pp.; Complex Var. Elliptic Equ., to appear |
| Publikationsart: | Article |
| Sprache: | English |
| ISSN: | 1747-6941 1747-6933 |
| DOI: | 10.1080/17476933.2025.2549398 |
| DOI: | 10.48550/arxiv.2504.12839 |
| Zugangs-URL: | http://arxiv.org/abs/2504.12839 |
| Rights: | CC BY NC ND arXiv Non-Exclusive Distribution |
| Dokumentencode: | edsair.doi.dedup.....a853b9f21a5dab1a0b0d68fa42327b6c |
| Datenbank: | OpenAIRE |
| Abstract: | We investigate properties of holomorphic extensions in the one-variable case of Whitney's Approximation Theorem on intervals. Improving a result of Gauthier-Kienzle, we construct tangentially approximating functions which extend holomorphically to domains of optimal size. For approximands on unbounded closed intervals, we also bound the growth of holomorphic extensions, in the spirit of Arakelyan, Bernstein, Keldych, and Kober.<br />23 pp.; Complex Var. Elliptic Equ., to appear |
|---|---|
| ISSN: | 17476941 17476933 |
| DOI: | 10.1080/17476933.2025.2549398 |
Full Text Finder
Nájsť tento článok vo Web of Science