Continuum concentric push–pull robots: A Cosserat rod model
Saved in:
| Title: | Continuum concentric push–pull robots: A Cosserat rod model |
|---|---|
| Authors: | Tummers, Matthias, Boyer, Frédéric, Lebastard, Vincent, Offermann, Alexis, Troccaz, Jocelyne, Rosa, Benoit, Chikhaoui, M. Taha |
| Contributors: | TUMMERS, Matthias, Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA), Robotique Et Vivant (LS2N - équipe ReV), Laboratoire des Sciences du Numérique de Nantes (LS2N), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-NANTES UNIVERSITÉ - École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Nantes Université (Nantes Univ), Département Automatique, Productique et Informatique (IMT Atlantique - DAPI), IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0004,CAMI,Gestes Médico-Chirurgicaux Assistés par Ordinateur(2011), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), ANR-20-CE33-0001,COSSEROOTS,Théorie Cosserat pour les robots élancés contrôlés en déformation(2020), ANR-10-IAHU-0002,IHU de Strasbourg (ex MIX-Surg),Institut de Chirurgie Mini-Invasive guidée par l'Image(2010), ANR-18-CE19-0012,MACROS,Robots continus multi-actionnés pour la chirugie mini-invasive(2018), ANR-21-ESRE-0015,TIRREX,Infrastructure technologique pour la recherche d'excellence en robotique(2021), ANR-10-IAHU-0002,MIX-Surg,Institut de Chirurgie Mini-Invasive guidée par l'Image(2010) |
| Source: | The International Journal of Robotics Research. 44:216-246 |
| Publisher Information: | SAGE Publications, 2024. |
| Publication Year: | 2024 |
| Subject Terms: | DYNAMICS, Technology, medical robots and systems, Kinematics, [PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph], [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph], Mechanics, Flexible Robotics, [SPI.AUTO]Engineering Sciences [physics]/Automatic, TENDON, Medical Robots and Systems, 0801 Artificial Intelligence and Image Processing, [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO], [SPI.MECA.SOLID] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph], [SDV.IB] Life Sciences [q-bio]/Bioengineering, Science & Technology, STABILITY, 4007 Control engineering, mechatronics and robotics, [PHYS.MECA.GEME] Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph], [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO], FRICTION, Robotics, flexible robotics, 0906 Electrical and Electronic Engineering, 4603 Computer vision and multimedia computation, Industrial Engineering & Automation, kinematics, cosserat rod modeling, [SDV.IB]Life Sciences [q-bio]/Bioengineering, Continuum robots, Cosserat rod modeling, mechanics, 0913 Mechanical Engineering |
| Description: | Various approaches and structures emerged recently to design continuum robots. One of the most promising designs regards a new concept of continuum concentric push–pull robots (CPPRs) that have the characteristic of combining several key advantages of tendon actuated, multi-backbone, and concentric tube ones (direct curvature actuation, small outer/inner diameter ratio, free lumen, etc.). Geometrically-exact models of such recently introduced robots are yet to be developed to gain leverage of their full potential. This article extends beyond usual definitions of Cosserat rod theory in order to take into account this new type of continuum robots, constituted by sliding rods, in a shape of tubes whose cross-sections are neither uniform nor symmetrical along their entire length. The introduced model is capable of considering versatile design options, external loads, 3D deformations, an arbitrary number of tubes and profiles of the centroid lines, as well as a new actuation method consisting of an input rotation. Numerical simulations and experiments on CPPR prototypes validate our model. |
| Document Type: | Article |
| File Description: | application/pdf |
| Language: | English |
| ISSN: | 1741-3176 0278-3649 |
| DOI: | 10.1177/02783649241263366 |
| Access URL: | https://lirias.kuleuven.be/handle/20.500.12942/751601 https://doi.org/10.1177/02783649241263366 https://hal.science/hal-04715577v2/document https://doi.org/10.1177/02783649241263366 https://hal.science/hal-04715577v2 |
| Rights: | URL: https://journals.sagepub.com/page/policies/text-and-data-mining-license |
| Accession Number: | edsair.doi.dedup.....a7367e7db4a69564fcd7f74f77bbac04 |
| Database: | OpenAIRE |
| Abstract: | Various approaches and structures emerged recently to design continuum robots. One of the most promising designs regards a new concept of continuum concentric push–pull robots (CPPRs) that have the characteristic of combining several key advantages of tendon actuated, multi-backbone, and concentric tube ones (direct curvature actuation, small outer/inner diameter ratio, free lumen, etc.). Geometrically-exact models of such recently introduced robots are yet to be developed to gain leverage of their full potential. This article extends beyond usual definitions of Cosserat rod theory in order to take into account this new type of continuum robots, constituted by sliding rods, in a shape of tubes whose cross-sections are neither uniform nor symmetrical along their entire length. The introduced model is capable of considering versatile design options, external loads, 3D deformations, an arbitrary number of tubes and profiles of the centroid lines, as well as a new actuation method consisting of an input rotation. Numerical simulations and experiments on CPPR prototypes validate our model. |
|---|---|
| ISSN: | 17413176 02783649 |
| DOI: | 10.1177/02783649241263366 |
Nájsť tento článok vo Web of Science