GENERALIZED TOPOLOGICAL OPERATOR ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-OPERATOR) THEORY IN GENERALIZED TOPOLOGICAL SPACES ($\mathcal{T}_{\mathfrak{g}}$-SPACES): PART IV. GENERALIZED DERIVED ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-DERIVED) AND GENERALIZED CODERIVED ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-CODERIVED) OPERATORS
Saved in:
| Title: | GENERALIZED TOPOLOGICAL OPERATOR ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-OPERATOR) THEORY IN GENERALIZED TOPOLOGICAL SPACES ($\mathcal{T}_{\mathfrak{g}}$-SPACES): PART IV. GENERALIZED DERIVED ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-DERIVED) AND GENERALIZED CODERIVED ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-CODERIVED) OPERATORS |
|---|---|
| Authors: | Mohammad Irshad Khodabocus, Noor-ul-hacq Sookıa, Radhakhrishna Dinesh Somanah |
| Source: | Volume: 7, Issue: 2128-165 Journal of Universal Mathematics |
| Publisher Information: | Journal of Universal Mathematics, 2024. |
| Publication Year: | 2024 |
| Subject Terms: | Topoloji, Generalized topological space ($\mathcal{T}_{\mathfrak{g}}$-space), generalized sets ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-sets), $\delta^{\operatorname{th}}$-order generalized derived operator ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-derived operator), $\delta^{\operatorname{th}}$-order generalized coderived operator ($\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-coderived operator), Topology |
| Description: | In a recent paper (\textsc{Cf.} \cite{KHODABOCUS_2023_4}), we have introduced the definitions and studied the essential properties of the generalized topological operators $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ (\textit{$\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-derived} and \textit{$\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-coderived operators}) in a generalized topological space $\mathfrak{T}_{\mathfrak{g}} = \left(\Omega,\mathcal{T}_{\mathfrak{g}}\right)$ (\textit{$\mathcal{T}_{\mathfrak{g}}$-space}). Mainly, we have shown that $\left(\operatorname{\mathfrak{g}-Der_{\mathfrak{g}}},\operatorname{\mathfrak{g}-Cod_{\mathfrak{g}}}\right): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ is a pair of both \textit{dual and monotone $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-operators} that is \textit{$\left(\emptyset,\Omega\right)$, $\left(\cup,\cap\right)$-preserving}, and \textit{$\left(\subseteq,\supseteq\right)$-preserving} relative to $\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-(open, closed) sets. We have also shown that $\left(\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}},\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}\right): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ is a pair of \textit{weaker} and \textit{stronger $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-operators}. In this paper, we define by transfinite recursion on the class of successor ordinals the $\delta^{\operatorname{th}}$-iterates $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ (\textit{$\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-derived} and \textit{$\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-coderived operators}) of $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$, respectively, and study their basic properties in a $\mathcal{T}_{\mathfrak{g}}$-space. Moreover, we establish the necessary and sufficient conditions for $\bigl(\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)},\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}\bigr): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ to be a pair of $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-derived and $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-coderived operators in $\mathfrak{T}_{\mathfrak{g}}$. Finally, we diagram various relationships amongst $\operatorname{der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{cod}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ and present a nice application to support the overall study. |
| Document Type: | Article |
| File Description: | application/pdf |
| ISSN: | 2618-5660 |
| DOI: | 10.33773/jum.1393185 |
| Access URL: | https://dergipark.org.tr/tr/pub/jum/issue/86441/1393185 |
| Accession Number: | edsair.doi.dedup.....a557bf19eac6c37e31d0a40b85e96a71 |
| Database: | OpenAIRE |
| Abstract: | In a recent paper (\textsc{Cf.} \cite{KHODABOCUS_2023_4}), we have introduced the definitions and studied the essential properties of the generalized topological operators $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ (\textit{$\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-derived} and \textit{$\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-coderived operators}) in a generalized topological space $\mathfrak{T}_{\mathfrak{g}} = \left(\Omega,\mathcal{T}_{\mathfrak{g}}\right)$ (\textit{$\mathcal{T}_{\mathfrak{g}}$-space}). Mainly, we have shown that $\left(\operatorname{\mathfrak{g}-Der_{\mathfrak{g}}},\operatorname{\mathfrak{g}-Cod_{\mathfrak{g}}}\right): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ is a pair of both \textit{dual and monotone $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-operators} that is \textit{$\left(\emptyset,\Omega\right)$, $\left(\cup,\cap\right)$-preserving}, and \textit{$\left(\subseteq,\supseteq\right)$-preserving} relative to $\operatorname{\mathfrak{g}-\mathfrak{T}}_{\mathfrak{g}}$-(open, closed) sets. We have also shown that $\left(\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}},\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}\right): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ is a pair of \textit{weaker} and \textit{stronger $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-operators}. In this paper, we define by transfinite recursion on the class of successor ordinals the $\delta^{\operatorname{th}}$-iterates $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ (\textit{$\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-derived} and \textit{$\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}^{\left(\delta\right)}}$-coderived operators}) of $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$, respectively, and study their basic properties in a $\mathcal{T}_{\mathfrak{g}}$-space. Moreover, we establish the necessary and sufficient conditions for $\bigl(\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)},\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}\bigr): \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)\times\mathcal{P}\left(\Omega\right)$ to be a pair of $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-derived and $\operatorname{\mathfrak{g}-\mathfrak{T}_{\mathfrak{g}}}$-coderived operators in $\mathfrak{T}_{\mathfrak{g}}$. Finally, we diagram various relationships amongst $\operatorname{der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Der}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{cod}_{\mathfrak{g}}^{\left(\delta\right)}$, $\operatorname{\mathfrak{g}-Cod}_{\mathfrak{g}}^{\left(\delta\right)}: \mathcal{P}\left(\Omega\right) \longrightarrow \mathcal{P}\left(\Omega\right)$ and present a nice application to support the overall study. |
|---|---|
| ISSN: | 26185660 |
| DOI: | 10.33773/jum.1393185 |
Nájsť tento článok vo Web of Science