The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds

Uložené v:
Podrobná bibliografia
Názov: The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds
Autori: Fu, Jixiang, Xu, Xin, Zhang, Dekai
Zdroj: Chinese Annals of Mathematics, Series B. 46:647-662
Publication Status: Preprint
Informácie o vydavateľovi: Springer Science and Business Media LLC, 2025.
Rok vydania: 2025
Predmety: Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, Differential Geometry (math.DG), Mathematics - Complex Variables, FOS: Mathematics, Complex Variables (math.CV), Analysis of PDEs (math.AP)
Popis: We prove the long time existence and uniqueness of solution to a parabolic quaternionic Monge-Ampère type equation on a compact hyperKähler manifold. We also show that after normalization, the solution converges smoothly to the unique solution of the Monge-Ampère equation for $(n-1)$-quaternionic psh functions.
Druh dokumentu: Article
Jazyk: English
ISSN: 1860-6261
0252-9599
DOI: 10.1007/s11401-025-0033-0
DOI: 10.48550/arxiv.2310.09225
Prístupová URL adresa: http://arxiv.org/abs/2310.09225
Rights: Springer Nature TDM
CC BY NC SA
Prístupové číslo: edsair.doi.dedup.....a1d344a63c40fc0193ed57f25290ad1c
Databáza: OpenAIRE
Popis
Abstrakt:We prove the long time existence and uniqueness of solution to a parabolic quaternionic Monge-Ampère type equation on a compact hyperKähler manifold. We also show that after normalization, the solution converges smoothly to the unique solution of the Monge-Ampère equation for $(n-1)$-quaternionic psh functions.
ISSN:18606261
02529599
DOI:10.1007/s11401-025-0033-0