On counting cuspidal automorphic representations for GSp(4)

Uloženo v:
Podrobná bibliografie
Název: On counting cuspidal automorphic representations for GSp(4)
Autoři: Roy, Manami, Schmidt, Ralf, Yi, Shaoyun
Zdroj: Forum Mathematicum. 33:821-843
Publication Status: Preprint
Informace o vydavateli: Walter de Gruyter GmbH, 2021.
Rok vydání: 2021
Témata: Arthur packets, Mathematics - Number Theory, cuspidal automorphic representations, dimension formulas, FOS: Mathematics, 11F46, 11F70, Plancherel measure, Number Theory (math.NT), 0101 mathematics, 01 natural sciences, Siegel cusp forms
Popis: We find the number s k ⁢ ( p , Ω ) s_{k}(p,\Omega) of cuspidal automorphic representations of GSp ⁢ ( 4 , A Q ) \mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}}) with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight k ≥ 3 k\geq 3 , and the non-archimedean component at 𝑝 is an Iwahori-spherical representation of type Ω and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for s k ⁢ ( p , Ω ) s_{k}(p,\Omega) generalizes to the vector-valued case and a finite number of ramified places.
Druh dokumentu: Article
Other literature type
Popis souboru: Text
Jazyk: English
ISSN: 1435-5337
0933-7741
DOI: 10.1515/forum-2020-0313
DOI: 10.48550/arxiv.2010.09996
Přístupová URL adresa: http://arxiv.org/pdf/2010.09996
http://arxiv.org/abs/2010.09996
https://digital.library.unt.edu/ark:/67531/metadc1838861/m2/1/high_res_d/2010.09996.pdf
https://www.degruyter.com/document/doi/10.1515/forum-2020-0313/html
https://digital.library.unt.edu/ark:/67531/metadc1838861/
https://ui.adsabs.harvard.edu/abs/2020arXiv201009996R/abstract
https://arxiv.org/abs/2010.09996
http://export.arxiv.org/pdf/2010.09996
https://arxiv.org/pdf/2010.09996.pdf
Rights: arXiv Non-Exclusive Distribution
Přístupové číslo: edsair.doi.dedup.....9d6cbdd3da2ac5d3d99f01182ea8a337
Databáze: OpenAIRE
Popis
Abstrakt:We find the number s k ⁢ ( p , Ω ) s_{k}(p,\Omega) of cuspidal automorphic representations of GSp ⁢ ( 4 , A Q ) \mathrm{GSp}(4,\mathbb{A}_{\mathbb{Q}}) with trivial central character such that the archimedean component is a holomorphic discrete series representation of weight k ≥ 3 k\geq 3 , and the non-archimedean component at 𝑝 is an Iwahori-spherical representation of type Ω and unramified otherwise. Using the automorphic Plancherel density theorem, we show how a limit version of our formula for s k ⁢ ( p , Ω ) s_{k}(p,\Omega) generalizes to the vector-valued case and a finite number of ramified places.
ISSN:14355337
09337741
DOI:10.1515/forum-2020-0313