Spectrally bounded operators on simple 𝐶*-algebras: Spectrally bounded operators on simple \(C^{*}\)-algebras

Uloženo v:
Podrobná bibliografie
Název: Spectrally bounded operators on simple 𝐶*-algebras: Spectrally bounded operators on simple \(C^{*}\)-algebras
Autoři: Mathieu, Martin
Zdroj: Proceedings of the American Mathematical Society. 132:443-446
Informace o vydavateli: American Mathematical Society (AMS), 2003.
Rok vydání: 2003
Témata: Structure theory of linear operators, Jordan structures on Banach spaces and algebras, 4. Education, name=Applied Mathematics, 01 natural sciences, purely infinite simple \(C^*\)-algebras, Linear operators on Banach algebras, name=General Mathematics, General theory of \(C^*\)-algebras, Jordan homomorphisms, spectrally bounded operators, 0101 mathematics
Popis: A linear mappingTTfrom a subspaceEEof a Banach algebra into another Banach algebra is called spectrally bounded if there is a constantM≥0M\geq 0such thatr(Tx)≤Mr(x)r(Tx)\leq M\,r(x)for allx∈Ex\in E, wherer(⋅)r(\,\cdot \,)denotes the spectral radius. We prove that every spectrally bounded unital operator from a unital purely infinite simpleC∗C^*-algebra onto a unital semisimple Banach algebra is a Jordan epimorphism.
Druh dokumentu: Article
Other literature type
Popis souboru: application/xml
Jazyk: English
ISSN: 1088-6826
0002-9939
DOI: 10.1090/s0002-9939-03-07215-0
Přístupová URL adresa: https://www.ams.org/proc/2004-132-02/S0002-9939-03-07215-0/S0002-9939-03-07215-0.pdf
https://zbmath.org/1998470
https://doi.org/10.1090/s0002-9939-03-07215-0
https://pure.qub.ac.uk/portal/en/publications/spectrally-bounded-operators-on-simple-calgebras(17d47821-82b4-426c-9e6f-b966efdd6d16)/export.html
https://www.ams.org/proc/2004-132-02/S0002-9939-03-07215-0/S0002-9939-03-07215-0.pdf
https://www.ams.org/journals/proc/2004-132-02/S0002-9939-03-07215-0/home.html
Rights: URL: https://www.ams.org/publications/copyright-and-permissions
Přístupové číslo: edsair.doi.dedup.....9ac10ba4e7cedaf6e8255ab5abf8889a
Databáze: OpenAIRE
Popis
Abstrakt:A linear mappingTTfrom a subspaceEEof a Banach algebra into another Banach algebra is called spectrally bounded if there is a constantM≥0M\geq 0such thatr(Tx)≤Mr(x)r(Tx)\leq M\,r(x)for allx∈Ex\in E, wherer(⋅)r(\,\cdot \,)denotes the spectral radius. We prove that every spectrally bounded unital operator from a unital purely infinite simpleC∗C^*-algebra onto a unital semisimple Banach algebra is a Jordan epimorphism.
ISSN:10886826
00029939
DOI:10.1090/s0002-9939-03-07215-0