Spectrally bounded operators on simple 𝐶*-algebras: Spectrally bounded operators on simple \(C^{*}\)-algebras
Gespeichert in:
| Titel: | Spectrally bounded operators on simple 𝐶*-algebras: Spectrally bounded operators on simple \(C^{*}\)-algebras |
|---|---|
| Autoren: | Mathieu, Martin |
| Quelle: | Proceedings of the American Mathematical Society. 132:443-446 |
| Verlagsinformationen: | American Mathematical Society (AMS), 2003. |
| Publikationsjahr: | 2003 |
| Schlagwörter: | Structure theory of linear operators, Jordan structures on Banach spaces and algebras, 4. Education, name=Applied Mathematics, 01 natural sciences, purely infinite simple \(C^*\)-algebras, Linear operators on Banach algebras, name=General Mathematics, General theory of \(C^*\)-algebras, Jordan homomorphisms, spectrally bounded operators, 0101 mathematics |
| Beschreibung: | A linear mappingTTfrom a subspaceEEof a Banach algebra into another Banach algebra is called spectrally bounded if there is a constantM≥0M\geq 0such thatr(Tx)≤Mr(x)r(Tx)\leq M\,r(x)for allx∈Ex\in E, wherer(⋅)r(\,\cdot \,)denotes the spectral radius. We prove that every spectrally bounded unital operator from a unital purely infinite simpleC∗C^*-algebra onto a unital semisimple Banach algebra is a Jordan epimorphism. |
| Publikationsart: | Article Other literature type |
| Dateibeschreibung: | application/xml |
| Sprache: | English |
| ISSN: | 1088-6826 0002-9939 |
| DOI: | 10.1090/s0002-9939-03-07215-0 |
| Zugangs-URL: | https://www.ams.org/proc/2004-132-02/S0002-9939-03-07215-0/S0002-9939-03-07215-0.pdf https://zbmath.org/1998470 https://doi.org/10.1090/s0002-9939-03-07215-0 https://pure.qub.ac.uk/portal/en/publications/spectrally-bounded-operators-on-simple-calgebras(17d47821-82b4-426c-9e6f-b966efdd6d16)/export.html https://www.ams.org/proc/2004-132-02/S0002-9939-03-07215-0/S0002-9939-03-07215-0.pdf https://www.ams.org/journals/proc/2004-132-02/S0002-9939-03-07215-0/home.html |
| Rights: | URL: https://www.ams.org/publications/copyright-and-permissions |
| Dokumentencode: | edsair.doi.dedup.....9ac10ba4e7cedaf6e8255ab5abf8889a |
| Datenbank: | OpenAIRE |
| Abstract: | A linear mappingTTfrom a subspaceEEof a Banach algebra into another Banach algebra is called spectrally bounded if there is a constantM≥0M\geq 0such thatr(Tx)≤Mr(x)r(Tx)\leq M\,r(x)for allx∈Ex\in E, wherer(⋅)r(\,\cdot \,)denotes the spectral radius. We prove that every spectrally bounded unital operator from a unital purely infinite simpleC∗C^*-algebra onto a unital semisimple Banach algebra is a Jordan epimorphism. |
|---|---|
| ISSN: | 10886826 00029939 |
| DOI: | 10.1090/s0002-9939-03-07215-0 |
Full Text Finder
Nájsť tento článok vo Web of Science