On submodule transitivity of QTAG-modules

Uložené v:
Podrobná bibliografia
Názov: On submodule transitivity of QTAG-modules
Autori: Fahad Sikander, Firdhousi Begam, Tanveer Fatima
Zdroj: AIMS Mathematics, Vol 8, Iss 4, Pp 9303-9313 (2023)
Informácie o vydavateľovi: American Institute of Mathematical Sciences (AIMS), 2023.
Rok vydania: 2023
Predmety: Monoclonal antibody, Artificial intelligence, Class (philosophy), Study of properties and structures of commutative rings, FOS: Political science, Immunology, Cluster Algebras and Triangulated Categories, FOS: Law, isotype submodule, Biochemistry, Gene, 01 natural sciences, Fuzzy Logic and Residuated Lattices, QA1-939, FOS: Mathematics, Genetics, 0101 mathematics, Biology, Political science, Antibody, Algebra and Number Theory, FOS: Clinical medicine, ulm-kaplansky invariants, Pure mathematics, nice submodules, Discrete mathematics, 16. Peace & justice, Automorphism, Computer science, qtag modules, Chemistry, Computational Theory and Mathematics, Quotient, totally projective module, Combinatorics, FOS: Biological sciences, Physical Sciences, Computer Science, Transformation (genetics), Element (criminal law), Geometry and Topology, Modal Logics, Transitive relation, Law, Mathematics, Isotype, Sequence (biology)
Popis: In this paper, we generalize a suitable transformation from an element-based to a submodule-based interpretation of the traditional idea of transitivity in QTAG modules. We examine QTAG modules that are transitive in the sense that the module has an automorphism that sends one isotype submodule $ K $ onto any other isotype submodule $ K' $, unless this is impossible because either the submodules or the quotient modules are not isomorphic. Additionally, the classes of strongly transitive and strongly $ U $-transitive QTAG modules are defined using a slight adaptations of this. This work investigates the latter class in depth, demonstrating that every $ \alpha $- module is strongly transitive with regard to countably generated isotype submodules.
Druh dokumentu: Article
Other literature type
ISSN: 2473-6988
DOI: 10.3934/math.2023467
DOI: 10.60692/ahsgs-5ph88
DOI: 10.60692/8djbe-ssw94
Prístupová URL adresa: https://doaj.org/article/5c04f220935645e0b5547c7940a49b71
Prístupové číslo: edsair.doi.dedup.....97e280f934cd5cd228dc143586664eb0
Databáza: OpenAIRE
Popis
Abstrakt:In this paper, we generalize a suitable transformation from an element-based to a submodule-based interpretation of the traditional idea of transitivity in QTAG modules. We examine QTAG modules that are transitive in the sense that the module has an automorphism that sends one isotype submodule $ K $ onto any other isotype submodule $ K' $, unless this is impossible because either the submodules or the quotient modules are not isomorphic. Additionally, the classes of strongly transitive and strongly $ U $-transitive QTAG modules are defined using a slight adaptations of this. This work investigates the latter class in depth, demonstrating that every $ \alpha $- module is strongly transitive with regard to countably generated isotype submodules.
ISSN:24736988
DOI:10.3934/math.2023467