Calderón–Zygmund theory with noncommuting kernels via $\mathrm H_1^c$: Calderón-Zygmund theory with noncommuting kernels via \(\text{H}_1^c\)
Uložené v:
| Názov: | Calderón–Zygmund theory with noncommuting kernels via $\mathrm H_1^c$: Calderón-Zygmund theory with noncommuting kernels via \(\text{H}_1^c\) |
|---|---|
| Autori: | Cano-Mármol, Antonio Ismael, Ricard, Éric |
| Prispievatelia: | Laboratoire de Mathématiques Nicolas Oresme (LMNO), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019) |
| Zdroj: | Studia Mathematica. 277:65-97 |
| Informácie o vydavateľovi: | Institute of Mathematics, Polish Academy of Sciences, 2024. |
| Rok vydania: | 2024 |
| Predmety: | non-commutative \(L_p\) space, atoms, BMO space, Singular and oscillatory integrals (Calderón-Zygmund, etc.), Noncommutative measure and integration, Hardy space, [MATH]Mathematics [math], 0101 mathematics, Function spaces arising in harmonic analysis, Calderón-Zygmund theory, 01 natural sciences, Noncommutative function spaces, von Neumann algebra |
| Popis: | Summary: We study an alternative definition of the \(\text{H}_1\)-space associated to a semicommutative von Neumann algebra \(L_\infty (\mathbb{R}) \overline{\otimes} \mathcal{M}\), first studied by \textit{T. Mei} [Operator valued Hardy spaces. Providence, RI: American Mathematical Society (AMS) (2007; Zbl 1138.46038)]. We identify a ``new'' description for atoms in \(\text{H}_1\). We then explain how they can be used to study \(\text{H}_1^c - L_1\) endpoint estimates for Calderón-Zygmund operators with noncommuting kernels. |
| Druh dokumentu: | Article |
| Popis súboru: | application/xml |
| Jazyk: | English |
| ISSN: | 1730-6337 0039-3223 |
| DOI: | 10.4064/sm230908-9-2 |
| Prístupová URL adresa: | https://zbmath.org/7927016 https://doi.org/10.4064/sm230908-9-2 |
| Prístupové číslo: | edsair.doi.dedup.....96cda01d9415f9285f93419b7f6a096b |
| Databáza: | OpenAIRE |
| Abstrakt: | Summary: We study an alternative definition of the \(\text{H}_1\)-space associated to a semicommutative von Neumann algebra \(L_\infty (\mathbb{R}) \overline{\otimes} \mathcal{M}\), first studied by \textit{T. Mei} [Operator valued Hardy spaces. Providence, RI: American Mathematical Society (AMS) (2007; Zbl 1138.46038)]. We identify a ``new'' description for atoms in \(\text{H}_1\). We then explain how they can be used to study \(\text{H}_1^c - L_1\) endpoint estimates for Calderón-Zygmund operators with noncommuting kernels. |
|---|---|
| ISSN: | 17306337 00393223 |
| DOI: | 10.4064/sm230908-9-2 |
Nájsť tento článok vo Web of Science