Calderón–Zygmund theory with noncommuting kernels via $\mathrm H_1^c$: Calderón-Zygmund theory with noncommuting kernels via \(\text{H}_1^c\)

Uložené v:
Podrobná bibliografia
Názov: Calderón–Zygmund theory with noncommuting kernels via $\mathrm H_1^c$: Calderón-Zygmund theory with noncommuting kernels via \(\text{H}_1^c\)
Autori: Cano-Mármol, Antonio Ismael, Ricard, Éric
Prispievatelia: Laboratoire de Mathématiques Nicolas Oresme (LMNO), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), ANR-19-CE40-0002,ANCG,Analyse non commutative sur les groupes et les groupes quantiques(2019)
Zdroj: Studia Mathematica. 277:65-97
Informácie o vydavateľovi: Institute of Mathematics, Polish Academy of Sciences, 2024.
Rok vydania: 2024
Predmety: non-commutative \(L_p\) space, atoms, BMO space, Singular and oscillatory integrals (Calderón-Zygmund, etc.), Noncommutative measure and integration, Hardy space, [MATH]Mathematics [math], 0101 mathematics, Function spaces arising in harmonic analysis, Calderón-Zygmund theory, 01 natural sciences, Noncommutative function spaces, von Neumann algebra
Popis: Summary: We study an alternative definition of the \(\text{H}_1\)-space associated to a semicommutative von Neumann algebra \(L_\infty (\mathbb{R}) \overline{\otimes} \mathcal{M}\), first studied by \textit{T. Mei} [Operator valued Hardy spaces. Providence, RI: American Mathematical Society (AMS) (2007; Zbl 1138.46038)]. We identify a ``new'' description for atoms in \(\text{H}_1\). We then explain how they can be used to study \(\text{H}_1^c - L_1\) endpoint estimates for Calderón-Zygmund operators with noncommuting kernels.
Druh dokumentu: Article
Popis súboru: application/xml
Jazyk: English
ISSN: 1730-6337
0039-3223
DOI: 10.4064/sm230908-9-2
Prístupová URL adresa: https://zbmath.org/7927016
https://doi.org/10.4064/sm230908-9-2
Prístupové číslo: edsair.doi.dedup.....96cda01d9415f9285f93419b7f6a096b
Databáza: OpenAIRE
Popis
Abstrakt:Summary: We study an alternative definition of the \(\text{H}_1\)-space associated to a semicommutative von Neumann algebra \(L_\infty (\mathbb{R}) \overline{\otimes} \mathcal{M}\), first studied by \textit{T. Mei} [Operator valued Hardy spaces. Providence, RI: American Mathematical Society (AMS) (2007; Zbl 1138.46038)]. We identify a ``new'' description for atoms in \(\text{H}_1\). We then explain how they can be used to study \(\text{H}_1^c - L_1\) endpoint estimates for Calderón-Zygmund operators with noncommuting kernels.
ISSN:17306337
00393223
DOI:10.4064/sm230908-9-2