The ball-covering property of non-commutative spaces of operators on Banach spaces

Uložené v:
Podrobná bibliografia
Názov: The ball-covering property of non-commutative spaces of operators on Banach spaces
Autori: Bao, Qiyao, Liu, Rui, Shen, Jie
Zdroj: Banach Journal of Mathematical Analysis. 19
Publication Status: Preprint
Informácie o vydavateľovi: Springer Science and Business Media LLC, 2025.
Rok vydania: 2025
Predmety: Mathematics - Functional Analysis, Geometry and structure of normed linear spaces, unconditional bases, Summability and bases, functional analytic aspects of frames in Banach and Hilbert spaces, FOS: Mathematics, Calkin algebra, non-commutative spaces of operators, ball-covering property, Spaces of operators, tensor products, approximation properties, 46B20, 46B15, 46B28, Noncommutative function spaces, quotient Banach algebras, Functional Analysis (math.FA)
Popis: A Banach space is said to have the ball-covering property (BCP) if its unit sphere can be covered by countably many closed or open balls off the origin. Let $X$ be a Banach space with a shrinking $1$-unconditional basis. In this paper, by constructing an equivalent norm on $B(X)$, we prove that the quotient Banach algebra $B(X)/K(X)$ fails the BCP. In particular, the result implies that the Calkin algebra $B(H)/ K(H)$, $B(\ell^p)/K(\ell^p)$ ($1 \leq p
Druh dokumentu: Article
Popis súboru: application/xml
Jazyk: English
ISSN: 1735-8787
2662-2033
DOI: 10.1007/s43037-025-00421-w
DOI: 10.48550/arxiv.2412.07137
Prístupová URL adresa: http://arxiv.org/abs/2412.07137
Rights: Springer Nature TDM
arXiv Non-Exclusive Distribution
Prístupové číslo: edsair.doi.dedup.....74c15b4a77a9d82b33de5191c9008d56
Databáza: OpenAIRE
Popis
Abstrakt:A Banach space is said to have the ball-covering property (BCP) if its unit sphere can be covered by countably many closed or open balls off the origin. Let $X$ be a Banach space with a shrinking $1$-unconditional basis. In this paper, by constructing an equivalent norm on $B(X)$, we prove that the quotient Banach algebra $B(X)/K(X)$ fails the BCP. In particular, the result implies that the Calkin algebra $B(H)/ K(H)$, $B(\ell^p)/K(\ell^p)$ ($1 \leq p
ISSN:17358787
26622033
DOI:10.1007/s43037-025-00421-w