Photocurrent-Detected 2D Electronic Spectroscopy Reveals Ultrafast Hole Transfer in Operating PM6/Y6 Organic Solar Cells

Gespeichert in:
Bibliographische Detailangaben
Titel: Photocurrent-Detected 2D Electronic Spectroscopy Reveals Ultrafast Hole Transfer in Operating PM6/Y6 Organic Solar Cells
Autoren: Elisabetta Collini, Luca Bolzonello, Francisco Bernal‐Texca, Jana Ockova, Jordi Martorell, Luis G. Gerling, Niek F. van Hulst
Weitere Verfasser: Universitat Politècnica de Catalunya. Doctorat en Fotònica, Universitat Politècnica de Catalunya. Departament de Física
Quelle: J Phys Chem Lett
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
The Journal of Physical Chemistry Letters
Verlagsinformationen: American Chemical Society (ACS), 2021.
Publikationsjahr: 2021
Schlagwörter: Física [Àrees temàtiques de la UPC], Dispositius optoelectrònics, Photovoltaic cells, Àrees temàtiques de la UPC::Física, 02 engineering and technology, Optoelectronic devices, Emission spectroscopy, 7. Clean energy, 01 natural sciences, 0104 chemical sciences, Electron transfer, Nonfullerene-acceptor-(NFA), 0210 nano-technology
Beschreibung: The performance of nonfullerene-acceptor-(NFA)-based organic solar cells is rapidly approaching the efficiency of inorganic cells. The chemical versatility of NFAs extends the light-harvesting range to the infrared, while preserving a considerably high open-circuit-voltage, crucial to achieve power-conversion efficiencies >17%. Such low voltage losses in the charge separation process have been attributed to a low-driving-force and efficient exciton dissociation. Here, we address the nature of the subpicosecond dynamics of electron/hole transfer in PM6/Y6 solar cells. While previous reports focused on active layers only, we developed a photocurrent-detected two-dimensional spectroscopy to follow the charge transfer in fully operating devices. Our measurements reveal an efficient hole-transfer from the Y6-acceptor to the PM6-donor on the subpicosecond time scale. On the contrary, at the same time scale, no electron-transfer is seen from the donor to the acceptor. These findings, putting ultrafast spectroscopy in action on operating optoelectronic devices, provide insight for further enhancing NFA solar cell performance.
Publikationsart: Article
Other literature type
Dateibeschreibung: application/pdf
Sprache: English
ISSN: 1948-7185
DOI: 10.1021/acs.jpclett.1c00822
DOI: 10.13039/100010661
Zugangs-URL: https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c00822
https://pubmed.ncbi.nlm.nih.gov/33877838
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8154857
https://pubmed.ncbi.nlm.nih.gov/33877838/
https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.1c00822
https://europepmc.org/article/PMC/PMC8154857
https://pubmed.ncbi.nlm.nih.gov/33877838/
https://hdl.handle.net/2117/366043
https://doi.org/10.1021/acs.jpclett.1c00822
Rights: CC BY NC ND
Dokumentencode: edsair.doi.dedup.....6d26d1909c03a76cb8b557ba7f845b87
Datenbank: OpenAIRE
Beschreibung
Abstract:The performance of nonfullerene-acceptor-(NFA)-based organic solar cells is rapidly approaching the efficiency of inorganic cells. The chemical versatility of NFAs extends the light-harvesting range to the infrared, while preserving a considerably high open-circuit-voltage, crucial to achieve power-conversion efficiencies >17%. Such low voltage losses in the charge separation process have been attributed to a low-driving-force and efficient exciton dissociation. Here, we address the nature of the subpicosecond dynamics of electron/hole transfer in PM6/Y6 solar cells. While previous reports focused on active layers only, we developed a photocurrent-detected two-dimensional spectroscopy to follow the charge transfer in fully operating devices. Our measurements reveal an efficient hole-transfer from the Y6-acceptor to the PM6-donor on the subpicosecond time scale. On the contrary, at the same time scale, no electron-transfer is seen from the donor to the acceptor. These findings, putting ultrafast spectroscopy in action on operating optoelectronic devices, provide insight for further enhancing NFA solar cell performance.
ISSN:19487185
DOI:10.1021/acs.jpclett.1c00822