Quantitative quenched Voronoi percolation and applications

Uložené v:
Podrobná bibliografia
Názov: Quantitative quenched Voronoi percolation and applications
Autori: Vanneuville, Hugo
Prispievatelia: Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Probabilités, statistique, physique mathématique (PSPM), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Zdroj: To be published in AIHP
Publication Status: Preprint
Informácie o vydavateľovi: Cellule MathDoc/Centre Mersenne, 2025.
Rok vydania: 2025
Predmety: [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph], Probability (math.PR), FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), 0101 mathematics, 01 natural sciences, Mathematics - Probability, Mathematical Physics
Popis: Ahlberg, Griffiths, Morris and Tassion have proved that, asymptotically almost surely, the quenched crossing probabilities for critical planar Voronoi percolation do not depend on the environment. We prove an analogous result for arm events. In particular, we prove that the variance of the quenched probability of an arm event is at most a constant times the square of the annealed probability. The fact that the arm events are degenerate and non-monotonic add two major difficulties. As an application, we prove that there exists ϵ>0 such that the following holds for the annealed percolation function θ an :∀p>1/2,θ an (p)≥ϵ(p-1/2) 1-ϵ .One of our motivations is to provide tools for a spectral study of Voronoi percolation.
Druh dokumentu: Article
Other literature type
Report
Jazyk: English
ISSN: 1777-5310
DOI: 10.5802/aif.3710
DOI: 10.48550/arxiv.1806.08448
Prístupová URL adresa: http://arxiv.org/abs/1806.08448
Rights: arXiv Non-Exclusive Distribution
Prístupové číslo: edsair.doi.dedup.....6563f4c3fe20d5e33e119fc1aeee261d
Databáza: OpenAIRE
Popis
Abstrakt:Ahlberg, Griffiths, Morris and Tassion have proved that, asymptotically almost surely, the quenched crossing probabilities for critical planar Voronoi percolation do not depend on the environment. We prove an analogous result for arm events. In particular, we prove that the variance of the quenched probability of an arm event is at most a constant times the square of the annealed probability. The fact that the arm events are degenerate and non-monotonic add two major difficulties. As an application, we prove that there exists ϵ>0 such that the following holds for the annealed percolation function θ an :∀p>1/2,θ an (p)≥ϵ(p-1/2) 1-ϵ .One of our motivations is to provide tools for a spectral study of Voronoi percolation.
ISSN:17775310
DOI:10.5802/aif.3710