One-year employment outcome prediction after traumatic brain injury: A CENTER-TBI study: A CENTER-TBI study

Saved in:
Bibliographic Details
Title: One-year employment outcome prediction after traumatic brain injury: A CENTER-TBI study: A CENTER-TBI study
Authors: Helena Van Deynse, Wilfried Cools, Viktor-Jan De Deken, Bart Depreitere, Ives Hubloue, Ellen Tisseghem, Koen Putman, Cecilia Åkerlund, Krisztina Amrein, Nada Andelic, Lasse Andreassen, Audny Anke, Anna Antoni, Gérard Audibert, Philippe Azouvi, Maria Luisa Azzolini, Ronald Bartels, Pál Barzó, Romuald Beauvais, Ronny Beer, Bo-Michael Bellander, Antonio Belli, Habib Benali, Maurizio Berardino, Luigi Beretta, Morten Blaabjerg, Peter Bragge, Alexandra Brazinova, Vibeke Brinck, Joanne Brooker, Camilla Brorsson, Andras Buki, Monika Bullinger, Manuel Cabeleira, Alessio Caccioppola, Emiliana Calappi, Maria Rosa Calvi, Peter Cameron, Guillermo Carbayo Lozano, Marco Carbonara, Simona Cavallo, Giorgio Chevallard, Arturo Chieregato, Giuseppe Citerio, Hans Clusmann, Mark Coburn, Jonathan Coles, Jamie D. Cooper, Marta Correia, Amra Čović, Nicola Curry, Endre Czeiter, Marek Czosnyka, Claire Dahyot-Fizelier, Paul Dark, Helen Dawes, Véronique De Keyser, Vincent Degos, Francesco Della Corte, Hugo den Boogert, Đula Đilvesi, Abhishek Dixit, Emma Donoghue, Jens Dreier, Guy-Loup Dulière, Ari Ercole, Patrick Esser, Erzsébet Ezer, Martin Fabricius, Valery L. Feigin, Kelly Foks, Shirin Frisvold, Alex Furmanov, Pablo Gagliardo, Damien Galanaud, Dashiell Gantner, Guoyi Gao, Pradeep George, Alexandre Ghuysen, Lelde Giga, Ben Glocker, Jagoš Golubovic, Pedro A. Gomez, Johannes Gratz, Benjamin Gravesteijn, Francesca Grossi, Russell L. Gruen, Deepak Gupta, Juanita A. Haagsma, Iain Haitsma, Raimund Helbok, Eirik Helseth, Lindsay Horton, Jilske Huijben, Peter J. Hutchinson, Bram Jacobs, Stefan Jankowski, Mike Jarrett, Ji-yao Jiang, Faye Johnson, Kelly Jones, Mladen Karan, Angelos G. Kolias, Erwin Kompanje, Daniel Kondziella, Evgenios Kornaropoulos, Lars-Owe Koskinen, Noémi Kovács, Ana Kowark, Alfonso Lagares, Linda Lanyon, Steven Laureys, Fiona Lecky, Didier Ledoux, Rolf Lefering, Valerie Legrand, Aurelie Lejeune, Leon Levi, Roger Lightfoot, Hester Lingsma, Andrew I.R. Maas, Ana M. Castaño-León, Marc Maegele, Marek Majdan, Alex Manara, Geoffrey Manley, Costanza Martino, Hugues Maréchal, Julia Mattern, Catherine McMahon, Béla Melegh, David Menon, Tomas Menovsky, Ana Mikolic, Benoit Misset, Visakh Muraleedharan, Lynnette Murray, Ancuta Negru, David Nelson, Virginia Newcombe, Daan Nieboer, József Nyirádi, Otesile Olubukola, Matej Oresic, Fabrizio Ortolano, Aarno Palotie, Paul M. Parizel, Jean-François Payen, Natascha Perera, Vincent Perlbarg, Paolo Persona, Wilco Peul, Anna Piippo-Karjalainen, Matti Pirinen, Dana Pisica, Horia Ples, Suzanne Polinder, Inigo Pomposo, Jussi P. Posti, Louis Puybasset, Andreea Radoi, Arminas Ragauskas, Rahul Raj, Malinka Rambadagalla, Isabel Retel Helmrich, Jonathan Rhodes, Sylvia Richardson, Sophie Richter, Samuli Ripatti, Saulius Rocka, Cecilie Roe, Olav Roise, Jonathan Rosand, Jeffrey V. Rosenfeld, Christina Rosenlund, Guy Rosenthal, Rolf Rossaint, Sandra Rossi, Daniel Rueckert, Martin Rusnák, Juan Sahuquillo, Oliver Sakowitz, Renan Sanchez-Porras, Janos Sandor, Nadine Schäfer, Silke Schmidt, Herbert Schoechl, Guus Schoonman, Rico Frederik Schou, Elisabeth Schwendenwein, Charlie Sewalt, Ranjit D. Singh, Toril Skandsen, Peter Smielewski, Abayomi Sorinola, Emmanuel Stamatakis, Simon Stanworth, Robert Stevens, William Stewart, Ewout W. Steyerberg, Nino Stocchetti, Nina Sundström, Riikka Takala, Viktória Tamás, Tomas Tamosuitis, Mark Steven Taylor, Aurore Thibaut, Braden Te Ao, Olli Tenovuo, Alice Theadom, Matt Thomas, Dick Tibboel, Marjolein Timmers, Christos Tolias, Tony Trapani, Cristina Maria Tudora, Andreas Unterberg, Peter Vajkoczy, Shirley Vallance, Egils Valeinis, Zoltán Vámos, Mathieu van der Jagt, Gregory Van der Steen, Joukje van der Naalt, Jeroen T.J.M. van Dijck, Inge A.M. van Erp, Thomas A. van Essen, Wim Van Hecke, Caroline van Heugten, Ernest van Veen, Thijs Vande Vyvere, Roel P.J. van Wijk, Alessia Vargiolu, Emmanuel Vega, Kimberley Velt, Jan Verheyden, Paul M. Vespa, Anne Vik, Rimantas Vilcinis, Victor Volovici, Nicole von Steinbüchel, Daphne Voormolen, Petar Vulekovic, Kevin K.W. Wang, Daniel Whitehouse, Eveline Wiegers, Guy Williams, Lindsay Wilson, Stefan Winzeck, Stefan Wolf, Zhihui Yang, Peter Ylén, Alexander Younsi, Frederick A. Zeiler, Veronika Zelinkova, Agate Ziverte, Tommaso Zoerle
Contributors: Ledoux, Didier, EU - European Union, FRB - King Baudouin Foundation, ZNS Hannelore Kohl Stiftung, One Mind, EC - European Commission, FWO - Research Foundation Flanders, Van Deynse, Helena, Cools, Wilfried, De Deken, Viktor-Jan, Depreitere, Bart, Hubloue, Ives, Tisseghem, Ellen, Putman, Koen, Åkerlund, Cecilia, Amrein, Krisztina, Andelic, Nada, Zoerle, Tommaso, Vrije Universiteit Brussel Bruxelles (VUB), University of Oslo (UiO), University of Tromsø (UiT), Espace de réflexion éthique Grand Est (EREGE Lorraine), Service de médecine physique et réadaptation CHU Raymond-Poincaré, Hôpital Raymond Poincaré AP-HP, Centre de recherche en épidémiologie et santé des populations (CESP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Innsbruck Medical University = Medizinische Universität Innsbruck (IMU), Centre Hospitalier Universitaire CHU Grenoble (CHUGA), Université Grenoble Alpes (UGA)
Source: Disability and Health Journal, 18, 2
CENTER-TBI Collaborators & et al. 2024, ' One-year employment outcome prediction after traumatic brain injury: A CENTER-TBI study. ', Disability and health journal . https://doi.org/10.1016/j.dhjo.2024.101716
Publisher Information: Elsevier BV, 2025.
Publication Year: 2025
Subject Terms: Male, Adult, Employment, Persons with Disabilities, Anesthésie & soins intensifs, Neurosurgery - Radboud University Medical Center, Neurologi, Traumatic/rehabilitation, Sciences de la santé humaine, Machine Learning, Cohort Studies, Young Adult, Return to Work, SDG 3 - Good Health and Well-being, TBI, Brain Injuries, Traumatic, Humans, Human health sciences, Hospitalization/statistics & numerical data, Employment/statistics & numerical data, Return to Work/statistics & numerical data, Public Health, Environmental and Occupational Health, Persons with Disabilities/statistics & numerical data, Anesthesia & intensive care, Middle Aged, Length of Stay, Prognosis, Europe, Logistic Models, Neurology, ROC Curve, Area Under Curve, Brain Injuries, Female, [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology, Algorithms
Description: Traumatic brain injury (TBI) can come with long term consequences for functional outcome that can complicate return to work.This study aims to make accurate patient-specific predictions on one-year return to work after TBI using machine learning algorithms. Within this process, specific research questions were defined: 1 How can we make accurate predictions on employment outcome, and does this require follow-up data beyond hospitalization? 2 Which predictors are required to make accurate predictions? 3 Are predictions accurate enough for use in clinical practice?This study used the core CENTER-TBI observational cohort dataset, collected across 18 European countries between 2014 and 2017. Hospitalized patients with sufficient follow-up data were selected for the current analysis (N = 586). Data regarding hospital stay and follow-up until three months post-injury were used to predict return to work after one year. Three distinct algorithms were used to predict employment outcomes: elastic net logistic regression, random forest and gradient boosting. Finally, a reduced model and corresponding ROC-curve was created.Full models without follow-up achieved an area under the curve (AUC) of about 81 %, which increased up to 88 % with follow-up data. A reduced model with five predictors achieved similar results with an AUC of 90 %.The addition of three-month follow-up data causes a notable increase in model performance. The reduced model - containing Glasgow Outcome Scale Extended, pre-injury job class, pre-injury employment status, length of stay and age - matched the predictive performance of the full models. Accurate predictions on post-TBI vocational outcomes contribute to realistic prognosis and goal setting, targeting the right interventions to the right patients.
Document Type: Article
File Description: application/pdf
Language: English
ISSN: 1936-6574
DOI: 10.1016/j.dhjo.2024.101716
Access URL: https://pubmed.ncbi.nlm.nih.gov/39482193
https://pure.eur.nl/en/publications/3ab066ef-921a-418c-a5e7-cea2b22ab2e2
https://doi.org/10.1016/j.dhjo.2024.101716
https://repository.ubn.ru.nl//bitstream/handle/2066/317429/317429.pdf
https://hdl.handle.net/2066/317429
https://hdl.handle.net/2268/328397
https://doi.org/10.1016/j.dhjo.2024.101716
https://resolver.sub.uni-goettingen.de/purl?gro-2/146919
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-117154
Rights: Elsevier TDM
taverne
Accession Number: edsair.doi.dedup.....63d516eb98b72596a9cc250a3f94baeb
Database: OpenAIRE
Description
Abstract:Traumatic brain injury (TBI) can come with long term consequences for functional outcome that can complicate return to work.This study aims to make accurate patient-specific predictions on one-year return to work after TBI using machine learning algorithms. Within this process, specific research questions were defined: 1 How can we make accurate predictions on employment outcome, and does this require follow-up data beyond hospitalization? 2 Which predictors are required to make accurate predictions? 3 Are predictions accurate enough for use in clinical practice?This study used the core CENTER-TBI observational cohort dataset, collected across 18 European countries between 2014 and 2017. Hospitalized patients with sufficient follow-up data were selected for the current analysis (N = 586). Data regarding hospital stay and follow-up until three months post-injury were used to predict return to work after one year. Three distinct algorithms were used to predict employment outcomes: elastic net logistic regression, random forest and gradient boosting. Finally, a reduced model and corresponding ROC-curve was created.Full models without follow-up achieved an area under the curve (AUC) of about 81 %, which increased up to 88 % with follow-up data. A reduced model with five predictors achieved similar results with an AUC of 90 %.The addition of three-month follow-up data causes a notable increase in model performance. The reduced model - containing Glasgow Outcome Scale Extended, pre-injury job class, pre-injury employment status, length of stay and age - matched the predictive performance of the full models. Accurate predictions on post-TBI vocational outcomes contribute to realistic prognosis and goal setting, targeting the right interventions to the right patients.
ISSN:19366574
DOI:10.1016/j.dhjo.2024.101716