Existence and regularity of weak solutions for mixed local and nonlocal semilinear elliptic equations

Uloženo v:
Podrobná bibliografie
Název: Existence and regularity of weak solutions for mixed local and nonlocal semilinear elliptic equations
Autoři: Cheng, Fuwei, Su, Xifeng, Zhang, Jiwen
Zdroj: Discrete and Continuous Dynamical Systems. 47:341-367
Publication Status: Preprint
Informace o vydavateli: American Institute of Mathematical Sciences (AIMS), 2026.
Rok vydání: 2026
Témata: Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
Popis: We study the existence, multiplicity and regularity results of weak solutions for the Dirichlet problem of a semi-linear elliptic equation driven by the mixture of the usual Laplacian and fractional Laplacian \begin{equation*} \left\{% \begin{array}{ll} -Δu + (-Δ)^{s} u+ a(x)\ u =f(x,u) & \hbox{in $Ω$,} u=0 & \hbox{in $\mathbb{R}^n\backslashΩ$} \end{array}% \right. \end{equation*} where $s \in (0,1)$, $Ω\subset \mathbb{R}^{n}$ is a bounded domain, the coefficient $a$ is a function of $x$ and the subcritical nonlinearity $f(x,u)$ has superlinear growth at zero and infinity. We show the existence of a non-trivial weak solution by Linking Theorem and Mountain Pass Theorem respectively for $λ_{1} \leqslant 0$ and $λ_{1} > 0$, where $λ_{1}$ denotes the first eigenvalue of $-Δ+ (-Δ)^{s} +a(x)$. In particular, adding a symmetric condition to $f$, we obtain infinitely many solutions via Fountain Theorem. Moreover, for the regularity part, we first prove the $L^{\infty}$-boundedness of weak solutions and then establish up to $C^{2, α}$-regularity up to boundary.
To appear in DCDS
Druh dokumentu: Article
ISSN: 1553-5231
1078-0947
DOI: 10.3934/dcds.2025122
DOI: 10.48550/arxiv.2508.01162
Přístupová URL adresa: http://arxiv.org/abs/2508.01162
Rights: arXiv Non-Exclusive Distribution
Přístupové číslo: edsair.doi.dedup.....612ead0e522f5e1d4cf06ca8593ebe39
Databáze: OpenAIRE
Popis
Abstrakt:We study the existence, multiplicity and regularity results of weak solutions for the Dirichlet problem of a semi-linear elliptic equation driven by the mixture of the usual Laplacian and fractional Laplacian \begin{equation*} \left\{% \begin{array}{ll} -Δu + (-Δ)^{s} u+ a(x)\ u =f(x,u) & \hbox{in $Ω$,} u=0 & \hbox{in $\mathbb{R}^n\backslashΩ$} \end{array}% \right. \end{equation*} where $s \in (0,1)$, $Ω\subset \mathbb{R}^{n}$ is a bounded domain, the coefficient $a$ is a function of $x$ and the subcritical nonlinearity $f(x,u)$ has superlinear growth at zero and infinity. We show the existence of a non-trivial weak solution by Linking Theorem and Mountain Pass Theorem respectively for $λ_{1} \leqslant 0$ and $λ_{1} > 0$, where $λ_{1}$ denotes the first eigenvalue of $-Δ+ (-Δ)^{s} +a(x)$. In particular, adding a symmetric condition to $f$, we obtain infinitely many solutions via Fountain Theorem. Moreover, for the regularity part, we first prove the $L^{\infty}$-boundedness of weak solutions and then establish up to $C^{2, α}$-regularity up to boundary.<br />To appear in DCDS
ISSN:15535231
10780947
DOI:10.3934/dcds.2025122