The Jordan Algebra of Complex Symmetric Operators

Gespeichert in:
Bibliographische Detailangaben
Titel: The Jordan Algebra of Complex Symmetric Operators
Autoren: Wang, Cun, Zhu, Sen
Quelle: Chinese Annals of Mathematics, Series B. 46:733-758
Publication Status: Preprint
Verlagsinformationen: Springer Science and Business Media LLC, 2025.
Publikationsjahr: 2025
Schlagwörter: 46L70, 47C10, 47B99, Mathematics - Operator Algebras, FOS: Mathematics, 0101 mathematics, Operator Algebras (math.OA), 01 natural sciences
Beschreibung: For a conjugation $C$ on a separable, complex Hilbert space $\mathcal{H}$, the set $\mathcal{S}_C$ of $C$-symmetric operators on $\mathcal{H}$ forms a weakly closed, selfadjoint, Jordan operator algebra. In this paper we study $\mathcal{S}_C$ in comparison with the algebra $\mathcal{B(H)}$ of all bounded linear operators on $\mathcal{H}$, and obtain $\mathcal{S}_C$-analogues of some classical results concerning $\mathcal{B(H)}$. We determine the Jordan ideals of $\mathcal{S}_C$ and their dual spaces. Jordan automorphisms of $\mathcal{S}_C$ are classified. We determine the spectra of Jordan multiplication operators on $\mathcal{S}_C$ and their different parts. It is proved that those Jordan invertible ones constitute a dense, path connected subset of $\mathcal{S}_C$.
24 pages
Publikationsart: Article
Sprache: English
ISSN: 1860-6261
0252-9599
DOI: 10.1007/s11401-025-0039-7
DOI: 10.48550/arxiv.1912.10391
Zugangs-URL: http://arxiv.org/abs/1912.10391
Rights: Springer Nature TDM
arXiv Non-Exclusive Distribution
Dokumentencode: edsair.doi.dedup.....5423faeddf22ec4b1ee69f1ae4eb4148
Datenbank: OpenAIRE
Beschreibung
Abstract:For a conjugation $C$ on a separable, complex Hilbert space $\mathcal{H}$, the set $\mathcal{S}_C$ of $C$-symmetric operators on $\mathcal{H}$ forms a weakly closed, selfadjoint, Jordan operator algebra. In this paper we study $\mathcal{S}_C$ in comparison with the algebra $\mathcal{B(H)}$ of all bounded linear operators on $\mathcal{H}$, and obtain $\mathcal{S}_C$-analogues of some classical results concerning $\mathcal{B(H)}$. We determine the Jordan ideals of $\mathcal{S}_C$ and their dual spaces. Jordan automorphisms of $\mathcal{S}_C$ are classified. We determine the spectra of Jordan multiplication operators on $\mathcal{S}_C$ and their different parts. It is proved that those Jordan invertible ones constitute a dense, path connected subset of $\mathcal{S}_C$.<br />24 pages
ISSN:18606261
02529599
DOI:10.1007/s11401-025-0039-7