An analog of the Hille theorem for hypercomplex functions in a finite-dimensional commutative algebra

Uloženo v:
Podrobná bibliografie
Název: An analog of the Hille theorem for hypercomplex functions in a finite-dimensional commutative algebra
Autoři: Plaksa, S. A., Shpakivskyi, V. S., Tkachuk, M. V.
Zdroj: Matematychni Studii. 64:32-41
Publication Status: Preprint
Informace o vydavateli: Ivan Franko National University of Lviv, 2025.
Rok vydání: 2025
Témata: Mathematics - Analysis of PDEs, Mathematics - Complex Variables, FOS: Mathematics, 13-11, Complex Variables (math.CV), Analysis of PDEs (math.AP)
Popis: We prove that a locally bounded and differentiable in the sense of Gâteaux function given in a finite-dimensional commutative Banach algebra over the complex field is also differentiable in the sense of Lorc and it is a monogenic function. The algebra $\mathbb{A}_n^m$ has the Cartan basis for which the first $m$ basic vectors $I_1,$ $I_2,$ $\ldots,$ $I_m$ are idempotents, and next $n-m$ basis vectors $I_{m+1},I_{m+2},\dots,I_n$ are nilpotent elements.Every locally bounded and differentiable in the sense of Gâteaux function $\Phi\colon \Omega\rightarrow\mathbb{A}_n^m$ can be represented in the form of linear combination of these idempotents, nilpotents and corresponding Cauchy-type integrals.
Druh dokumentu: Article
ISSN: 2411-0620
1027-4634
DOI: 10.30970/ms.64.1.32-41
DOI: 10.48550/arxiv.2502.08809
Přístupová URL adresa: http://arxiv.org/abs/2502.08809
Rights: CC BY NC ND
arXiv Non-Exclusive Distribution
Přístupové číslo: edsair.doi.dedup.....53ec9b9d4fe447807598777f6eb87bf9
Databáze: OpenAIRE
Popis
Abstrakt:We prove that a locally bounded and differentiable in the sense of Gâteaux function given in a finite-dimensional commutative Banach algebra over the complex field is also differentiable in the sense of Lorc and it is a monogenic function. The algebra $\mathbb{A}_n^m$ has the Cartan basis for which the first $m$ basic vectors $I_1,$ $I_2,$ $\ldots,$ $I_m$ are idempotents, and next $n-m$ basis vectors $I_{m+1},I_{m+2},\dots,I_n$ are nilpotent elements.Every locally bounded and differentiable in the sense of Gâteaux function $\Phi\colon \Omega\rightarrow\mathbb{A}_n^m$ can be represented in the form of linear combination of these idempotents, nilpotents and corresponding Cauchy-type integrals.
ISSN:24110620
10274634
DOI:10.30970/ms.64.1.32-41