Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation

Uloženo v:
Podrobná bibliografie
Název: Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation
Autoři: Priya Ramakrishna, Francisco M. Gámez-Arjona, Etienne Bellani, Cristina Martin-Olmos, Stéphane Escrig, Damien De Bellis, Anna De Luca, José M. Pardo, Francisco J. Quintero, Christel Genoud, Clara Sánchez-Rodriguez, Niko Geldner, Anders Meibom
Přispěvatelé: Université de Lausanne, ETH Zurich, Agencia Estatal de Investigación (España), Ministerio de Ciencia e Innovación (España), European Commission, École Polytechnique Fédérale de Lausanne, Swiss National Science Foundation, European Research Council, Ramakrishna, Priya [0000-0002-7371-6806], Gámez Arjona, Francisco M [0000-0001-5891-9843], Bellani, Etienne [0000-0003-0452-4859], Martin Olmos, Cristina [0000-0003-0688-484X], Escrig, Stéphane [0000-0001-9480-7208], De Bellis, Damien [0000-0003-3097-0465], De Luca, Anna [0000-0003-4510-8624], Pardo, José M. [0000-0001-8718-2975], Genoud, Christel [0000-0002-0933-9911], Sánchez Rodriguez, Clara [0000-0003-0987-9317], Geldner, Niko [0000-0002-2300-9644], Meibom, Anders [0000-0002-4542-2819], Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Zdroj: Nature
Digital.CSIC. Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)
Nature, vol. 637, no. 8048, pp. 1228-1233
Nature, 637 (8048)
Informace o vydavateli: Springer Science and Business Media LLC, 2025.
Rok vydání: 2025
Témata: STRESS, Sodium-Hydrogen Exchangers, Meristem, Arabidopsis, Spectrometry, Mass, Secondary Ion, Mass, Secondary Ion, K+, SALT TOLERANCE, End hunger, achieve food security and improved nutrition and promote sustainable agriculture, Plant Roots, Article, stress, Cell Wall, PLANTS, SOS1, NA+ TRANSPORT, salt tolerance, Spectrometry, Arabidopsis Proteins, TONOPLAST, Sodium, Arabidopsis/metabolism, Sodium/metabolism, Vacuoles/metabolism, Arabidopsis Proteins/metabolism, Arabidopsis Proteins/genetics, Oryza/metabolism, Oryza/chemistry, Sodium-Hydrogen Exchangers/metabolism, Meristem/metabolism, Cell Wall/metabolism, Cell Wall/chemistry, Plant Roots/metabolism, LOCALIZATION, Oryza, transport, Vacuoles, ATPASE ACTIVITY
Popis: Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution. Here we used the newly developed cryo nanoscale secondary ion mass spectrometry ion microprobe1, which allows high-resolution elemental imaging of cryo-preserved samples and reveals the subcellular distributions of key macronutrients and micronutrients in root meristem cells of Arabidopsis and rice. We found an unexpected, concentration-dependent change in sodium distribution, switching from sodium accumulation in the cell walls at low external sodium concentrations to vacuolar accumulation at stressful concentrations. We conclude that, in root meristems, a key function of the NHX family sodium/proton antiporter SALT OVERLY SENSITIVE 1 (also known as Na+/H+ exchanger 7; SOS1/NHX7) is to sequester sodium into vacuoles, rather than extrusion of sodium into the extracellular space. This is corroborated by the use of new genomic, complementing fluorescently tagged SOS1 variants. We show that, in addition to the plasma membrane, SOS1 strongly accumulates at late endosome/prevacuoles as well as vacuoles, supporting a role of SOS1 in vacuolar sodium sequestration.
Nature, 637 (8048)
ISSN:0028-0836
ISSN:1476-4687
Druh dokumentu: Article
Other literature type
Popis souboru: aplication/pdf; application/pdf; application/application/pdf
Jazyk: English
ISSN: 1476-4687
0028-0836
DOI: 10.1038/s41586-024-08403-y
DOI: 10.3929/ethz-b-000717087
DOI: 10.13039/501100000780
DOI: 10.13039/501100001703
DOI: 10.13039/501100004837
DOI: 10.13039/501100011033
DOI: 10.13039/501100006390
DOI: 10.13039/501100000781
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/39814877
https://api.elsevier.com/content/abstract/scopus_id/85217517825
http://hdl.handle.net/10261/384397
https://serval.unil.ch/resource/serval:BIB_ABAD6C2D7A18.P001/REF.pdf
https://serval.unil.ch/notice/serval:BIB_ABAD6C2D7A18
http://nbn-resolving.org/urn/resolver.pl?urn=urn:nbn:ch:serval-BIB_ABAD6C2D7A188
http://hdl.handle.net/20.500.11850/717087
Rights: CC BY NC ND
Přístupové číslo: edsair.doi.dedup.....40465cb80a6c98d46d9842502ba05a7b
Databáze: OpenAIRE
Popis
Abstrakt:Increasing soil salinity causes significant crop losses globally; therefore, understanding plant responses to salt (sodium) stress is of high importance. Plants avoid sodium toxicity through subcellular compartmentation by intricate processes involving a high level of elemental interdependence. Current technologies to visualize sodium, in particular, together with other elements, are either indirect or lack in resolution. Here we used the newly developed cryo nanoscale secondary ion mass spectrometry ion microprobe1, which allows high-resolution elemental imaging of cryo-preserved samples and reveals the subcellular distributions of key macronutrients and micronutrients in root meristem cells of Arabidopsis and rice. We found an unexpected, concentration-dependent change in sodium distribution, switching from sodium accumulation in the cell walls at low external sodium concentrations to vacuolar accumulation at stressful concentrations. We conclude that, in root meristems, a key function of the NHX family sodium/proton antiporter SALT OVERLY SENSITIVE 1 (also known as Na+/H+ exchanger 7; SOS1/NHX7) is to sequester sodium into vacuoles, rather than extrusion of sodium into the extracellular space. This is corroborated by the use of new genomic, complementing fluorescently tagged SOS1 variants. We show that, in addition to the plasma membrane, SOS1 strongly accumulates at late endosome/prevacuoles as well as vacuoles, supporting a role of SOS1 in vacuolar sodium sequestration.<br />Nature, 637 (8048)<br />ISSN:0028-0836<br />ISSN:1476-4687
ISSN:14764687
00280836
DOI:10.1038/s41586-024-08403-y