Onset Detection to Study Muscle Activity in Reaching and Grasping Movements in Rats

Uloženo v:
Podrobná bibliografie
Název: Onset Detection to Study Muscle Activity in Reaching and Grasping Movements in Rats
Autoři: Castillo Escario, Yolanda, Rodríguez Cañón, María, García Alías, Guillermo, Jané Campos, Raimon
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. BIOSPIN - Biomedical Signal Processing and Interpretation
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Informace o vydavateli: IEEE, 2019.
Rok vydání: 2019
Témata: Electromiografia, Movement, Biomedical signal processing, Video Recording, 02 engineering and technology, 03 medical and health sciences, 0302 clinical medicine, Reaching and grasping, 0202 electrical engineering, electronic engineering, information engineering, Animals, Biomechanics, Enginyeria biomèdica::Biomecànica [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria biomèdica::Biomecànica, Upper limb, Muscle, Skeletal, Onset detection, Electromyography, Enginyeria biomèdica [Àrees temàtiques de la UPC], Biomecànica, Àrees temàtiques de la UPC::Enginyeria biomèdica, Rats, Muscles--Motility, Músculs--Mobilitat, Algorithms, Muscle activity
Popis: EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.
Druh dokumentu: Article
Conference object
Popis souboru: application/pdf
DOI: 10.1109/embc.2019.8857200
Přístupová URL adresa: https://upcommons.upc.edu/bitstream/2117/174061/1/EMBC19_2077_FI.pdf
https://pubmed.ncbi.nlm.nih.gov/31947009
http://hdl.handle.net/2117/174061
https://upcommons.upc.edu/handle/2117/174061
https://ieeexplore.ieee.org/document/8857200/
https://dblp.uni-trier.de/db/conf/embc/embc2019.html#Castillo-Escario19a
https://www.ncbi.nlm.nih.gov/pubmed/31947009
Rights: IEEE Copyright
CC BY NC ND
Přístupové číslo: edsair.doi.dedup.....3f73006f57142139f7d71b446ccafde5
Databáze: OpenAIRE
Popis
Abstrakt:EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.
DOI:10.1109/embc.2019.8857200