Shortening Emergency Medical Response Time with Joint Operations of Uncrewed Aerial Vehicles with Ambulances

Uloženo v:
Podrobná bibliografie
Název: Shortening Emergency Medical Response Time with Joint Operations of Uncrewed Aerial Vehicles with Ambulances
Autoři: Xiaoquan Gao, Nan Kong, Paul Griffin
Zdroj: Manufacturing & Service Operations Management. 26:447-464
Informace o vydavateli: Institute for Operations Research and the Management Sciences (INFORMS), 2024.
Rok vydání: 2024
Témata: dispatching, 05 social sciences, 0211 other engineering and technologies, uncrewed aerial vehicles, 02 engineering and technology, simulation, 3. Good health, Health and Medical Administration, large-scale MDP, 0502 economics and business, Operations and Supply Chain Management, approximate dynamic programming
Popis: Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement. Funding: This work was supported by the National Science [Grant 1761022]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
Druh dokumentu: Article
Jazyk: English
ISSN: 1526-5498
1523-4614
DOI: 10.1287/msom.2022.0166
Přístupové číslo: edsair.doi.dedup.....3dce019fc1eab15694a75be13b6248e0
Databáze: OpenAIRE
Popis
Abstrakt:Problem definition: Uncrewed aerial vehicles (UAVs) are transforming emergency service logistics applications across sectors, offering easy deployment and rapid response. In the context of emergency medical services (EMS), UAVs have the potential to augment ambulances by leveraging bystander assistance, thereby reducing response times for delivering urgent medical interventions and improving EMS outcomes. Notably, the use of UAVs for opioid overdose cases is particularly promising as it addresses the challenges faced by ambulances in delivering timely medication. This study aims to optimize the integration of UAVs and bystanders into EMS in order to minimize average response times for overdose interventions. Methodology/results: We formulate the joint operation of UAVs with ambulances through a Markov decision process that captures random emergency vehicle travel times and bystander availability. We apply an approximate dynamic programming approach to mitigate the solution challenges from high-dimensional state variables and complex decisions through a neural network-based approximation of the value functions (NN-API). To design the approximation, we construct a set of basis functions based on queueing and geographic properties of the UAV-augmented EMS system. Managerial implications: The simulation results suggest that our NN-API policy tends to outperform several noteworthy rule- and optimization-based benchmark policies in terms of accumulated rewards, particularly for situations that are primarily characterized by high request arrival rates and a limited number of available ambulances and UAVs. The results also demonstrate the benefits of incorporating UAVs into the EMS system and the effectiveness of an intelligent real-time operations strategy in addressing capacity shortages, which are often a problem in rural areas of the United States. Additionally, the results provide insights into specific contributions of each dispatching or redeployment strategy to overall performance improvement. Funding: This work was supported by the National Science [Grant 1761022]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0166
ISSN:15265498
15234614
DOI:10.1287/msom.2022.0166