Small and large data scattering for the dispersion-managed NLS

Uloženo v:
Podrobná bibliografie
Název: Small and large data scattering for the dispersion-managed NLS
Autoři: Kawakami, Jumpei, Murphy, Jason
Zdroj: Discrete and Continuous Dynamical Systems. 47:256-285
Publication Status: Preprint
Informace o vydavateli: American Institute of Mathematical Sciences (AIMS), 2026.
Rok vydání: 2026
Témata: Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
Popis: We prove several scattering results for dispersion-managed nonlinear Schrödinger equations. In particular, we establish small-data scattering for both `intercritical' and `mass-subcritical' powers by suitable modifications of the standard approach via Strichartz estimates. In addition, we prove scattering for arbitrary data in a weighted Sobolev space for intercritical powers by establishing a pseudoconformal energy estimate. We also rule out (unmodified) scattering for sufficiently low powers. Finally, we give some remarks concerning blowup for the focusing equation.
31 pages
Druh dokumentu: Article
ISSN: 1553-5231
1078-0947
DOI: 10.3934/dcds.2025118
DOI: 10.48550/arxiv.2407.11151
Přístupová URL adresa: http://arxiv.org/abs/2407.11151
Rights: arXiv Non-Exclusive Distribution
Přístupové číslo: edsair.doi.dedup.....39fb210624b25fb1434d3a752330c163
Databáze: OpenAIRE
Popis
Abstrakt:We prove several scattering results for dispersion-managed nonlinear Schrödinger equations. In particular, we establish small-data scattering for both `intercritical' and `mass-subcritical' powers by suitable modifications of the standard approach via Strichartz estimates. In addition, we prove scattering for arbitrary data in a weighted Sobolev space for intercritical powers by establishing a pseudoconformal energy estimate. We also rule out (unmodified) scattering for sufficiently low powers. Finally, we give some remarks concerning blowup for the focusing equation.<br />31 pages
ISSN:15535231
10780947
DOI:10.3934/dcds.2025118