Amide Proton Transfer Weighted Imaging Shows Differences in Multiple Sclerosis Lesions and White Matter Hyperintensities of Presumed Vascular Origin

Gespeichert in:
Bibliographische Detailangaben
Titel: Amide Proton Transfer Weighted Imaging Shows Differences in Multiple Sclerosis Lesions and White Matter Hyperintensities of Presumed Vascular Origin
Autoren: Elisabeth Sartoretti, Thomas Sartoretti, Michael Wyss, Anton S. Becker, Árpád Schwenk, Luuk van Smoorenburg, Arash Najafi, Christoph Binkert, Harriet C. Thoeny, Jinyuan Zhou, Shanshan Jiang, Nicole Graf, David Czell, Sabine Sartoretti-Schefer, Carolin Reischauer
Quelle: Front Neurol
Frontiers in Neurology, Vol 10 (2019)
Frontiers in Neurology, 10
Verlagsinformationen: Frontiers Media SA, 2019.
Publikationsjahr: 2019
Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, Neurology, white matter lesions, magnetic resonance imaging, amide proton transfer, molecular imaging, multiple sclerosis lesions, CEST, Neurology. Diseases of the nervous system, RC346-429
Beschreibung: Objectives: To assess the ability of 3D amide proton transfer weighted (APTw) imaging based on magnetization transfer analysis to discriminate between multiple sclerosis lesions (MSL) and white matter hyperintensities of presumed vascular origin (WMH) and to compare APTw signal intensity of healthy white matter (healthy WM) with APTw signal intensity of MSL and WHM. Materials and Methods: A total of 27 patients (16 female, 11 males, mean age 39.6 years) with multiple sclerosis, 35 patients (17 females, 18 males, mean age 66.6 years) with small vessel disease (SVD) and 20 healthy young volunteers (9 females, 11 males, mean age 29 years) were included in the MSL, the WMH, and the healthy WM group. MSL and WMH were segmented on fluid attenuated inversion recovery (FLAIR) images underlaid onto APTw images. Histogram parameters (mean, median, 10th, 25th, 75th, 90th percentile) were calculated. Mean APTw signal intensity values in healthy WM were defined by “Region of interest” (ROI) measurements. Wilcoxon rank sum tests and receiver operating characteristics (ROC) curve analyses of clustered data were applied. Results: All histogram parameters except the 75 and 90th percentile were significantly different between MSL and WMH (p = 0.018–p = 0.034). MSL presented with higher median values in all parameters. The histogram parameters offered only low diagnostic performance in discriminating between MSL and WMH. The 10th percentile yielded the highest diagnostic performance with an AUC of 0.6245 (95% CI: [0.532, 0.717]). Mean APTw signal intensity values of MSL were significantly higher than mean values of healthy WM (p = 0.005). The mean values of WMH did not differ significantly from the values of healthy WM (p = 0.345). Conclusions: We found significant differences in APTw signal intensity, based on straightforward magnetization transfer analysis, between MSL and WMH and between MSL and healthy WM. Low AUC values from ROC analyses, however, suggest that it may be challenging to determine type of lesion with APTw imaging. More advanced analysis of the APT CEST signal may be helpful for further differentiation of MSL and WMH.
Frontiers in Neurology, 10
ISSN:1664-2295
Publikationsart: Article
Conference object
Other literature type
Dateibeschreibung: application/application/pdf
ISSN: 1664-2295
DOI: 10.3389/fneur.2019.01307
DOI: 10.3929/ethz-b-000387872
Zugangs-URL: https://www.frontiersin.org/articles/10.3389/fneur.2019.01307/pdf
https://pubmed.ncbi.nlm.nih.gov/31920930
https://doaj.org/article/3611f1bec1d143aa84afd6816ad6e02f
https://www.frontiersin.org/articles/10.3389/fneur.2019.01307/full
https://www.ncbi.nlm.nih.gov/pubmed/31920930
https://www.research-collection.ethz.ch/handle/20.500.11850/387872
https://jhu.pure.elsevier.com/en/publications/amide-proton-transfer-weighted-imaging-shows-differences-in-multi
https://www.frontiersin.org/article/10.3389/fneur.2019.01307/full
https://pubmed.ncbi.nlm.nih.gov/31920930/
http://hdl.handle.net/20.500.11850/387872
http://doc.rero.ch/record/328011/files/tho_apt_sm1.txt
Rights: CC BY
Dokumentencode: edsair.doi.dedup.....294658b7eb2fa159507ab4a61cdad57c
Datenbank: OpenAIRE
Beschreibung
Abstract:Objectives: To assess the ability of 3D amide proton transfer weighted (APTw) imaging based on magnetization transfer analysis to discriminate between multiple sclerosis lesions (MSL) and white matter hyperintensities of presumed vascular origin (WMH) and to compare APTw signal intensity of healthy white matter (healthy WM) with APTw signal intensity of MSL and WHM. Materials and Methods: A total of 27 patients (16 female, 11 males, mean age 39.6 years) with multiple sclerosis, 35 patients (17 females, 18 males, mean age 66.6 years) with small vessel disease (SVD) and 20 healthy young volunteers (9 females, 11 males, mean age 29 years) were included in the MSL, the WMH, and the healthy WM group. MSL and WMH were segmented on fluid attenuated inversion recovery (FLAIR) images underlaid onto APTw images. Histogram parameters (mean, median, 10th, 25th, 75th, 90th percentile) were calculated. Mean APTw signal intensity values in healthy WM were defined by “Region of interest” (ROI) measurements. Wilcoxon rank sum tests and receiver operating characteristics (ROC) curve analyses of clustered data were applied. Results: All histogram parameters except the 75 and 90th percentile were significantly different between MSL and WMH (p = 0.018–p = 0.034). MSL presented with higher median values in all parameters. The histogram parameters offered only low diagnostic performance in discriminating between MSL and WMH. The 10th percentile yielded the highest diagnostic performance with an AUC of 0.6245 (95% CI: [0.532, 0.717]). Mean APTw signal intensity values of MSL were significantly higher than mean values of healthy WM (p = 0.005). The mean values of WMH did not differ significantly from the values of healthy WM (p = 0.345). Conclusions: We found significant differences in APTw signal intensity, based on straightforward magnetization transfer analysis, between MSL and WMH and between MSL and healthy WM. Low AUC values from ROC analyses, however, suggest that it may be challenging to determine type of lesion with APTw imaging. More advanced analysis of the APT CEST signal may be helpful for further differentiation of MSL and WMH.<br />Frontiers in Neurology, 10<br />ISSN:1664-2295
ISSN:16642295
DOI:10.3389/fneur.2019.01307