Probing Surface Dynamics of SiOx Thin-Film Electrodes during Cycling through X-Ray Photoemission Spectroscopy and Operando X-Ray Reflectivity

Uloženo v:
Podrobná bibliografie
Název: Probing Surface Dynamics of SiOx Thin-Film Electrodes during Cycling through X-Ray Photoemission Spectroscopy and Operando X-Ray Reflectivity
Autoři: Zijie Lu, Khawla Zrikem, Frédéric Le Cras, Masatomo Tanaka, Mitsunori Nakamoto, Anass Benayad, Samuel Tardif, Ambroise van Roekeghem
Přispěvatelé: CEA, Contributeur MAP, Nanostructures et Rayons X (NRX), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Département des Technologies des Nouveaux Matériaux (Ex Département des Technologies des NanoMatériaux) (DTNM), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN / CEA-DES), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département de l'électricité et de l'hydrogène pour les transports (DEHT), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS), Murata Manufacturing Co.
Zdroj: ACS Applied Materials & Interfaces. 16:52130-52143
Informace o vydavateli: American Chemical Society (ACS), 2024.
Rok vydání: 2024
Témata: Lithium-ion batteries, Solid electrolyte interphase (SEI), Operando synchrotron X-ray reflectivity (XRR), [CHIM] Chemical Sciences, [CHIM]Chemical Sciences, X-ray photoelectron spectroscopy (XPS), [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat], SiOx thin-film electrodes, [PHYS.COND] Physics [physics]/Condensed Matter [cond-mat], Surface dynamics
Popis: SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.
Druh dokumentu: Article
Popis souboru: application/pdf
Jazyk: English
ISSN: 1944-8252
1944-8244
DOI: 10.1021/acsami.4c05078
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/39298291
https://cea.hal.science/cea-04708493v1/document
https://cea.hal.science/cea-04708493v1
https://doi.org/10.1021/acsami.4c05078
Rights: STM Policy #29
Přístupové číslo: edsair.doi.dedup.....1ed98afa5a2d0d803f1df23f3e17aa96
Databáze: OpenAIRE
Popis
Abstrakt:SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.
ISSN:19448252
19448244
DOI:10.1021/acsami.4c05078