An anticyclotomic Euler system for adjoint modular Galois representations

Saved in:
Bibliographic Details
Title: An anticyclotomic Euler system for adjoint modular Galois representations
Authors: Alonso, Raúl, Castella, Francesc, Rivero, Óscar
Source: Annales de l'Institut Fourier. 75:291-329
Publication Status: Preprint
Publisher Information: Cellule MathDoc/Centre Mersenne, 2025.
Publication Year: 2025
Subject Terms: Mathematics - Number Theory, 11R23 (Primary) 11F85, 14G35 (Secondary), FOS: Mathematics, Number Theory (math.NT), 0101 mathematics, 01 natural sciences
Description: Let K be an imaginary quadratic field and p a prime split in K. In this paper we construct an anticyclotomic Euler system for the adjoint representation attached to elliptic modular forms base changed to K. We also relate our Euler system to a p-adic L-function deduced from the construction by Eischen–Wan and Eischen–Harris–Li–Skinner of p-adic L-functions for unitary groups. This allows us to derive new cases of the Bloch–Kato conjecture in rank zero, and a divisibility towards an Iwasawa main conjecture.
Document Type: Article
Language: English
ISSN: 1777-5310
DOI: 10.5802/aif.3646
DOI: 10.48550/arxiv.2204.07658
Access URL: http://arxiv.org/abs/2204.07658
Rights: CC BY
Accession Number: edsair.doi.dedup.....1b64a6ad4bf4197ec901b6fcc06e52a0
Database: OpenAIRE
Be the first to leave a comment!
You must be logged in first