Podrobná bibliografie
| Název: |
An anticyclotomic Euler system for adjoint modular Galois representations |
| Autoři: |
Alonso, Raúl, Castella, Francesc, Rivero, Óscar |
| Zdroj: |
Annales de l'Institut Fourier. 75:291-329 |
| Publication Status: |
Preprint |
| Informace o vydavateli: |
Cellule MathDoc/Centre Mersenne, 2025. |
| Rok vydání: |
2025 |
| Témata: |
Mathematics - Number Theory, 11R23 (Primary) 11F85, 14G35 (Secondary), FOS: Mathematics, Number Theory (math.NT), 0101 mathematics, 01 natural sciences |
| Popis: |
Let K be an imaginary quadratic field and p a prime split in K. In this paper we construct an anticyclotomic Euler system for the adjoint representation attached to elliptic modular forms base changed to K. We also relate our Euler system to a p-adic L-function deduced from the construction by Eischen–Wan and Eischen–Harris–Li–Skinner of p-adic L-functions for unitary groups. This allows us to derive new cases of the Bloch–Kato conjecture in rank zero, and a divisibility towards an Iwasawa main conjecture. |
| Druh dokumentu: |
Article |
| Jazyk: |
English |
| ISSN: |
1777-5310 |
| DOI: |
10.5802/aif.3646 |
| DOI: |
10.48550/arxiv.2204.07658 |
| Přístupová URL adresa: |
http://arxiv.org/abs/2204.07658 |
| Rights: |
CC BY |
| Přístupové číslo: |
edsair.doi.dedup.....1b64a6ad4bf4197ec901b6fcc06e52a0 |
| Databáze: |
OpenAIRE |