An anticyclotomic Euler system for adjoint modular Galois representations

Gespeichert in:
Bibliographische Detailangaben
Titel: An anticyclotomic Euler system for adjoint modular Galois representations
Autoren: Alonso, Raúl, Castella, Francesc, Rivero, Óscar
Quelle: Annales de l'Institut Fourier. 75:291-329
Publication Status: Preprint
Verlagsinformationen: Cellule MathDoc/Centre Mersenne, 2025.
Publikationsjahr: 2025
Schlagwörter: Mathematics - Number Theory, 11R23 (Primary) 11F85, 14G35 (Secondary), FOS: Mathematics, Number Theory (math.NT), 0101 mathematics, 01 natural sciences
Beschreibung: Let K be an imaginary quadratic field and p a prime split in K. In this paper we construct an anticyclotomic Euler system for the adjoint representation attached to elliptic modular forms base changed to K. We also relate our Euler system to a p-adic L-function deduced from the construction by Eischen–Wan and Eischen–Harris–Li–Skinner of p-adic L-functions for unitary groups. This allows us to derive new cases of the Bloch–Kato conjecture in rank zero, and a divisibility towards an Iwasawa main conjecture.
Publikationsart: Article
Sprache: English
ISSN: 1777-5310
DOI: 10.5802/aif.3646
DOI: 10.48550/arxiv.2204.07658
Zugangs-URL: http://arxiv.org/abs/2204.07658
Rights: CC BY
Dokumentencode: edsair.doi.dedup.....1b64a6ad4bf4197ec901b6fcc06e52a0
Datenbank: OpenAIRE