Modeling Malaria Risk in Mozambique Using Climate and Health Data

Gespeichert in:
Bibliographische Detailangaben
Titel: Modeling Malaria Risk in Mozambique Using Climate and Health Data
Autoren: Girma, Milky
Verlagsinformationen: Zenodo, 2025.
Publikationsjahr: 2025
Schlagwörter: Machine Learning, Sub-Saharan Africa, Disease surveillance, Malaria Forecasting, Supervised Machine Learning, Public Health, Predictive Modeling, Risk Prediction, Climate Data, Mozambique, Malaria
Beschreibung: This study develops machine learning models to predict monthly malaria incidence in Mopeia, Mozambique, integrating epidemiological, climatic, and spatial features. A novel Malaria Proneness Index (MPI) is proposed to enhance prediction accuracy and support targeted public health interventions
Publikationsart: Journal
Sprache: English
DOI: 10.5281/zenodo.17218068
DOI: 10.5281/zenodo.17009862
DOI: 10.5281/zenodo.17009861
Rights: CC BY
Dokumentencode: edsair.doi.dedup.....1746d8a80dc0de523e094d82700fbc9a
Datenbank: OpenAIRE
Beschreibung
Abstract:This study develops machine learning models to predict monthly malaria incidence in Mopeia, Mozambique, integrating epidemiological, climatic, and spatial features. A novel Malaria Proneness Index (MPI) is proposed to enhance prediction accuracy and support targeted public health interventions
DOI:10.5281/zenodo.17218068