Cusp forms of weight 1 associated to Fermat curves

Uloženo v:
Podrobná bibliografie
Název: Cusp forms of weight 1 associated to Fermat curves
Autoři: Yang, Tonghai
Zdroj: Duke Math. J. 83, no. 1 (1996), 141-156
Informace o vydavateli: Duke University Press, 1996.
Rok vydání: 1996
Témata: modular curve, Fermat curve, 11F11, 01 natural sciences, Modular and Shimura varieties, Plane and space curves, principal congruence subgroup, dimension formulas, canonical basis for the space of cusp forms of weight 1, 0103 physical sciences, canonical basis for the space of modular forms, Riemann-Roch theorems, 0101 mathematics, 11G18, Holomorphic modular forms of integral weight
Popis: Let \(\Delta\) be the free subgroup of the principal congruence subgroup \(\Gamma (2)\) generated by \(A= \left(\begin{smallmatrix} 1 & 2 \\ 0 & 1 \end{smallmatrix} \right)\) and \(B = \left (\begin{smallmatrix} 1 & 0 \\ 2 & 1 \end{smallmatrix} \right)\) (one has \(\Gamma(2) = \{\pm I\} \Delta)\), and for \(N\in\mathbb{N}\) let \(\Phi(N)\) be the subgroup of \(\Delta\) generated by \(A^N\) and \(B^N\) and the commutator \([\Delta,\Delta]\). Then the associated modular curve \(X(\Phi (N))\) is isomorphic to the Fermat curve \(X^N + Y^N=Z^N\). As is well-known, \(\Phi(N)\) is not a congruence subgroup unless \(N=1,2,4,8\). Using the above isomorphism the author constructs a canonical basis for the space of modular forms and cusp forms of weight 1 for \(\Phi(N)\), and, as a consequence, obtains explicit dimension formulas for these spaces. One should note that the classical Riemann-Roch theorem in general only gives explicit dimension formulas for spaces of cusp forms of weight \(k\geq 2\).
Druh dokumentu: Article
Other literature type
Popis souboru: application/xml; application/pdf
ISSN: 0012-7094
DOI: 10.1215/s0012-7094-96-08306-4
Přístupová URL adresa: https://zbmath.org/912123
https://doi.org/10.1215/s0012-7094-96-08306-4
https://projecteuclid.org/journals/duke-mathematical-journal/volume-83/issue-1/Cusp-forms-of-weight-1-associated-to-Fermat-curves/10.1215/S0012-7094-96-08306-4.full
http://projecteuclid.org/euclid.dmj/1077244250
Přístupové číslo: edsair.doi.dedup.....1078e7ef6732f805c9a3d261d25e157d
Databáze: OpenAIRE
Popis
Abstrakt:Let \(\Delta\) be the free subgroup of the principal congruence subgroup \(\Gamma (2)\) generated by \(A= \left(\begin{smallmatrix} 1 & 2 \\ 0 & 1 \end{smallmatrix} \right)\) and \(B = \left (\begin{smallmatrix} 1 & 0 \\ 2 & 1 \end{smallmatrix} \right)\) (one has \(\Gamma(2) = \{\pm I\} \Delta)\), and for \(N\in\mathbb{N}\) let \(\Phi(N)\) be the subgroup of \(\Delta\) generated by \(A^N\) and \(B^N\) and the commutator \([\Delta,\Delta]\). Then the associated modular curve \(X(\Phi (N))\) is isomorphic to the Fermat curve \(X^N + Y^N=Z^N\). As is well-known, \(\Phi(N)\) is not a congruence subgroup unless \(N=1,2,4,8\). Using the above isomorphism the author constructs a canonical basis for the space of modular forms and cusp forms of weight 1 for \(\Phi(N)\), and, as a consequence, obtains explicit dimension formulas for these spaces. One should note that the classical Riemann-Roch theorem in general only gives explicit dimension formulas for spaces of cusp forms of weight \(k\geq 2\).
ISSN:00127094
DOI:10.1215/s0012-7094-96-08306-4