Orthophotomosaicing Framework for Thermal and Multispectral Images Collected with a UAV for Intelligent Systems

Gespeichert in:
Bibliographische Detailangaben
Titel: Orthophotomosaicing Framework for Thermal and Multispectral Images Collected with a UAV for Intelligent Systems
Autoren: Victor Sineglazov, Kyrylo Lesohorskyi
Quelle: Electronics and Control Systems; Vol. 2 No. 84 (2025); 21-28
Электроника и системы управления; Том 2 № 84 (2025); 21-28
Електроніка та системи управління; Том 2 № 84 (2025); 21-28
Verlagsinformationen: State University "Kyiv Aviation Institute", 2025.
Publikationsjahr: 2025
Schlagwörter: machine learning, orthophotomosaicing, mine detection, ортофотоплан, безпілотні літальні апарати, обробка зображень, машинне навчання, unmanned aerial vehicles, image processing, виявлення мін
Beschreibung: In this paper, a framework for orthophotomosaicing of multispectral and thermal images collected by unmanned aerial vehicles is presented. The proposed framework is based on a two-stage data preprocessing and mosaicing orthophotographic restoration of images captured with a route-planned unmanned aerial vehicle collection. The super-resolution and image restoration step is handled via a two-pathway U-net image restoration artificial neural network. The framework simplifies the process and makes the collected data less sensitive to noise via image restoration and upscaling steps. The framework was tested on visible, multispectral and thermal images and provides 3.5% and 5.34% improvements in peak signal-to-noise ratio for multispectral and thermal orthophotomosaics.
Publikationsart: Article
Dateibeschreibung: application/pdf
ISSN: 1990-5548
DOI: 10.18372/1990-5548.84.20189
Zugangs-URL: https://jrnl.nau.edu.ua/index.php/ESU/article/view/20189
Dokumentencode: edsair.doi.dedup.....0f18bb813446623a58c2784506fea6d8
Datenbank: OpenAIRE
Beschreibung
Abstract:In this paper, a framework for orthophotomosaicing of multispectral and thermal images collected by unmanned aerial vehicles is presented. The proposed framework is based on a two-stage data preprocessing and mosaicing orthophotographic restoration of images captured with a route-planned unmanned aerial vehicle collection. The super-resolution and image restoration step is handled via a two-pathway U-net image restoration artificial neural network. The framework simplifies the process and makes the collected data less sensitive to noise via image restoration and upscaling steps. The framework was tested on visible, multispectral and thermal images and provides 3.5% and 5.34% improvements in peak signal-to-noise ratio for multispectral and thermal orthophotomosaics.
ISSN:19905548
DOI:10.18372/1990-5548.84.20189