Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations

Uložené v:
Podrobná bibliografia
Názov: Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations
Autori: Tierney, Nicholas, Cook, Dianne
Zdroj: Journal of Statistical Software, Vol 105, Iss 1 (2023)
Journal of Statistical Software; Vol. 105 (2023); 1-31
Publication Status: Preprint
Informácie o vydavateľovi: Foundation for Open Access Statistic, 2023.
Rok vydania: 2023
Predmety: FOS: Computer and information sciences, QA299.6-433, Statistics, tidyverse, Statistics - Computation, 01 natural sciences, HA1-4737, statistical graphics, QA76.75-76.765, Econometric and statistical methods, QA1-939, data visualization, statistical computing, data science, Econometrics not elsewhere classified, 0101 mathematics, data pipeline, Computation (stat.CO)
Popis: Despite the large body of research on missing value distributions and imputation, there is comparatively little literature with a focus on how to make it easy to handle, explore, and impute missing values in data. This paper addresses this gap. The new methodology builds upon tidy data principles, with the goal of integrating missing value handling as a key part of data analysis workflows. We define a new data structure, and a suite of new operations. Together, these provide a connected framework for handling, exploring, and imputing missing values. These methods are available in the R package `naniar`.
30 pages, 16 figures, 7 tables, package available at github.com/njtierney/naniar
Druh dokumentu: Article
Other literature type
Popis súboru: application/pdf; application/gzip; text/plain; application/zip
Jazyk: English
ISSN: 1548-7660
DOI: 10.18637/jss.v105.i07
DOI: 10.48550/arxiv.1809.02264
DOI: 10.26180/21522555.v1
DOI: 10.26180/21522555
Prístupová URL adresa: http://arxiv.org/abs/1809.02264
https://doaj.org/article/b51e13ad39a8410c90413e746452a1f7
https://www.jstatsoft.org/index.php/jss/article/view/v105i07
Rights: arXiv Non-Exclusive Distribution
CC BY
Prístupové číslo: edsair.doi.dedup.....092088dc43903679a0c8c54c39cf35e1
Databáza: OpenAIRE
Popis
Abstrakt:Despite the large body of research on missing value distributions and imputation, there is comparatively little literature with a focus on how to make it easy to handle, explore, and impute missing values in data. This paper addresses this gap. The new methodology builds upon tidy data principles, with the goal of integrating missing value handling as a key part of data analysis workflows. We define a new data structure, and a suite of new operations. Together, these provide a connected framework for handling, exploring, and imputing missing values. These methods are available in the R package `naniar`.<br />30 pages, 16 figures, 7 tables, package available at github.com/njtierney/naniar
ISSN:15487660
DOI:10.18637/jss.v105.i07