Quadratic Detection in Noncoherent Massive SIMO Systems Over Correlated Channels

Gespeichert in:
Bibliographische Detailangaben
Titel: Quadratic Detection in Noncoherent Massive SIMO Systems Over Correlated Channels
Autoren: Vila Insa, Marc, Martí Espelt, Aniol, Riba Sagarra, Jaume, Lamarca Orozco, M. Meritxell
Weitere Verfasser: Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. SPCOM - Processament del Senyal i Comunicacions
Quelle: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Publication Status: Preprint
Verlagsinformationen: Institute of Electrical and Electronics Engineers (IEEE), 2024.
Publikationsjahr: 2024
Schlagwörter: Industrial internet of things (IIoT), Signal Processing (eess.SP), FOS: Computer and information sciences, Internet of things, Internet de les coses, Computer Science - Information Theory, Information Theory (cs.IT), E.4, Wireless communications systems, Noncoherent communications, Sistemes de, Statistical channel state information, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors, Comunicació sense fil, Sistemes de, 94A13, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Comunicació sense fil, Massive SIMO, Energy receiver
Beschreibung: With the goal of enabling ultrareliable and low-latency wireless communications for industrial internet of things (IIoT), this paper studies the use of energy-based modulations in noncoherent massive single-input multiple-output (SIMO) systems. We consider a one-shot communication over a channel with correlated Rayleigh fading and colored Gaussian noise, in which the receiver has statistical channel state information (CSI). We first provide a theoretical analysis on the limitations of unipolar pulse-amplitude modulation (PAM) in systems of this kind, based on maximum likelihood detection. The existence of a fundamental error floor at high signal-to-noise ratio (SNR) regimes is proved for constellations with more than two energy levels, when no (statistical) CSI is available at the transmitter. In the main body of the paper, we present a design framework for quadratic detectors that generalizes the widely-used energy detector, to better exploit the statistical knowledge of the channel. This allows us to design receivers optimized according to information-theoretic criteria that exhibit lower error rates at moderate and high SNR. We subsequently derive an analytic approximation for the error probability of a general class of quadratic detectors in the large array regime. Finally, we numerically validate it and discuss the outage probability of the system.
Accepted version of the article published in IEEE Transactions on Wireless Communications, 2024. DOI: 10.1109/TWC.2024.3411164
Publikationsart: Article
Dateibeschreibung: application/pdf
ISSN: 1558-2248
1536-1276
DOI: 10.1109/twc.2024.3411164
DOI: 10.48550/arxiv.2309.15030
Zugangs-URL: http://arxiv.org/abs/2309.15030
https://hdl.handle.net/2117/410572
https://doi.org/10.1109/twc.2024.3411164
https://arxiv.org/abs/2309.15030
Rights: IEEE Copyright
arXiv Non-Exclusive Distribution
Dokumentencode: edsair.doi.dedup.....05187a0437c7eaba4ce2445f282059f2
Datenbank: OpenAIRE
Beschreibung
Abstract:With the goal of enabling ultrareliable and low-latency wireless communications for industrial internet of things (IIoT), this paper studies the use of energy-based modulations in noncoherent massive single-input multiple-output (SIMO) systems. We consider a one-shot communication over a channel with correlated Rayleigh fading and colored Gaussian noise, in which the receiver has statistical channel state information (CSI). We first provide a theoretical analysis on the limitations of unipolar pulse-amplitude modulation (PAM) in systems of this kind, based on maximum likelihood detection. The existence of a fundamental error floor at high signal-to-noise ratio (SNR) regimes is proved for constellations with more than two energy levels, when no (statistical) CSI is available at the transmitter. In the main body of the paper, we present a design framework for quadratic detectors that generalizes the widely-used energy detector, to better exploit the statistical knowledge of the channel. This allows us to design receivers optimized according to information-theoretic criteria that exhibit lower error rates at moderate and high SNR. We subsequently derive an analytic approximation for the error probability of a general class of quadratic detectors in the large array regime. Finally, we numerically validate it and discuss the outage probability of the system.<br />Accepted version of the article published in IEEE Transactions on Wireless Communications, 2024. DOI: 10.1109/TWC.2024.3411164
ISSN:15582248
15361276
DOI:10.1109/twc.2024.3411164