Bilinear maps having Jordan product property

Gespeichert in:
Bibliographische Detailangaben
Titel: Bilinear maps having Jordan product property
Autoren: Jorge J. Garcés, Mykola Khrypchenko
Quelle: Linear Algebra and its Applications. 728:435-448
Publication Status: Preprint
Verlagsinformationen: Elsevier BV, 2026.
Publikationsjahr: 2026
Schlagwörter: Operator Algebras, Primary: 15A86, 47C15, 17C65, secondary: 17A36, 47B47, Rings and Algebras, Rings and Algebras (math.RA), FOS: Mathematics, Operator Algebras (math.OA)
Beschreibung: We study symmetric continuous bilinear maps $V$ on a C$^*$-algebra $A$ that have the Jordan product property at a fixed element $z\in A$. We show that, whenever $A$ is a finite direct sum or a $c_0$-sum of infinite simple von Neumann algebras, such a map $V$ has the square-zero property. Then, it is proved that $V(a,b)=T(a\circ b)$ for some bounded linear map $T$ on $A$. As a consequence, Jordan homomorphisms and derivations at $z\in A$ are characterized.
Publikationsart: Article
Sprache: English
ISSN: 0024-3795
DOI: 10.1016/j.laa.2025.09.013
DOI: 10.48550/arxiv.2508.09052
Zugangs-URL: http://arxiv.org/abs/2508.09052
Rights: Elsevier TDM
arXiv Non-Exclusive Distribution
Dokumentencode: edsair.doi.dedup.....0197a92d71bf08e2806be9cfed748bfb
Datenbank: OpenAIRE
Beschreibung
Abstract:We study symmetric continuous bilinear maps $V$ on a C$^*$-algebra $A$ that have the Jordan product property at a fixed element $z\in A$. We show that, whenever $A$ is a finite direct sum or a $c_0$-sum of infinite simple von Neumann algebras, such a map $V$ has the square-zero property. Then, it is proved that $V(a,b)=T(a\circ b)$ for some bounded linear map $T$ on $A$. As a consequence, Jordan homomorphisms and derivations at $z\in A$ are characterized.
ISSN:00243795
DOI:10.1016/j.laa.2025.09.013