Can One Recover the Underlying Spectral Data Matrix From a Given Borgen Plot?

Uložené v:
Podrobná bibliografia
Názov: Can One Recover the Underlying Spectral Data Matrix From a Given Borgen Plot?
Autori: Martina Beese, Tomass Andersons, Mathias Sawall, Hamid Abdollahi, Klaus Neymeyr
Zdroj: Journal of Chemometrics. 39
Informácie o vydavateľovi: Wiley, 2025.
Rok vydania: 2025
Popis: In multivariate curve resolution (MCR), Borgen plots represent the regions of feasible pure component profiles underlying spectral mixture data. A Borgen plot can be constructed geometrically in the low‐dimensional ‐ and ‐spaces if the so‐called outer polygon (representing nonnegativity constraints) and the inner polygon (i.e., the convex hull of the data representing points) are given. This paper asks whether it is possible to construct spectral data from the data representing points spanning the polygons and thus reconstruct the data from the associated Borgen plot. A partially positive answer is given.
Druh dokumentu: Article
Jazyk: English
ISSN: 1099-128X
0886-9383
DOI: 10.1002/cem.70016
Rights: CC BY
Prístupové číslo: edsair.doi...........fe776adc83da967862a963805518ed6e
Databáza: OpenAIRE
Popis
Abstrakt:In multivariate curve resolution (MCR), Borgen plots represent the regions of feasible pure component profiles underlying spectral mixture data. A Borgen plot can be constructed geometrically in the low‐dimensional ‐ and ‐spaces if the so‐called outer polygon (representing nonnegativity constraints) and the inner polygon (i.e., the convex hull of the data representing points) are given. This paper asks whether it is possible to construct spectral data from the data representing points spanning the polygons and thus reconstruct the data from the associated Borgen plot. A partially positive answer is given.
ISSN:1099128X
08869383
DOI:10.1002/cem.70016