Analysing online customer experience in hotel sector using dynamic topic modelling and net promoter score

Uložené v:
Podrobná bibliografia
Názov: Analysing online customer experience in hotel sector using dynamic topic modelling and net promoter score
Autori: Van-Ho Nguyen, Thanh Ho
Zdroj: Journal of Hospitality and Tourism Technology. 14:258-277
Informácie o vydavateľovi: Emerald, 2023.
Rok vydania: 2023
Predmety: 0502 economics and business, 05 social sciences
Popis: Purpose This study aims to analyse online customer experience in the hospitality industry through dynamic topic modelling (DTM) and net promoter score (NPS). A novel model that was used for collecting, pre-processing and analysing online reviews was proposed to understand the hidden information in the corpus and gain customer experience. Design/methodology/approach A corpus with 259,470 customer comments in English was collected. The researchers experimented and selected the best K parameter (number of topics) by perplexity and coherence score measurements as the input parameter for the model. Finally, the team experimented on the corpus using the Latent Dirichlet allocation (LDA) model and DTM with K coefficient to explore latent topics and trends of topics in the corpus over time. Findings The results of the topic model show hidden topics with the top high-probability keywords that are concerned with customers and the trends of topics over time. In addition, this study also calculated and analysed the NPS from customer rating scores and presented it on an overview dashboard. Research limitations/implications The data used in the experiment are only a part of all user comments; therefore, it may not reflect all of the current customer experience. Practical implications The management and business development of companies in the hotel industry can also benefit from the empirical findings from the topic model and NPS analytics, which will support decision-making to help businesses improve products and services, increase existing customer satisfaction and draw in new customers. Originality/value This study differs from previous works in that it attempts to fill a gap in research focused on online customer experience in the hospitality industry and uses text analytics and NPS to reach this goal.
Druh dokumentu: Article
Jazyk: English
ISSN: 1757-9880
DOI: 10.1108/jhtt-04-2021-0116
Rights: Emerald Insight Site Policies
Prístupové číslo: edsair.doi...........cce604f2c18efd2811fd25b1621c0645
Databáza: OpenAIRE
Popis
Abstrakt:Purpose This study aims to analyse online customer experience in the hospitality industry through dynamic topic modelling (DTM) and net promoter score (NPS). A novel model that was used for collecting, pre-processing and analysing online reviews was proposed to understand the hidden information in the corpus and gain customer experience. Design/methodology/approach A corpus with 259,470 customer comments in English was collected. The researchers experimented and selected the best K parameter (number of topics) by perplexity and coherence score measurements as the input parameter for the model. Finally, the team experimented on the corpus using the Latent Dirichlet allocation (LDA) model and DTM with K coefficient to explore latent topics and trends of topics in the corpus over time. Findings The results of the topic model show hidden topics with the top high-probability keywords that are concerned with customers and the trends of topics over time. In addition, this study also calculated and analysed the NPS from customer rating scores and presented it on an overview dashboard. Research limitations/implications The data used in the experiment are only a part of all user comments; therefore, it may not reflect all of the current customer experience. Practical implications The management and business development of companies in the hotel industry can also benefit from the empirical findings from the topic model and NPS analytics, which will support decision-making to help businesses improve products and services, increase existing customer satisfaction and draw in new customers. Originality/value This study differs from previous works in that it attempts to fill a gap in research focused on online customer experience in the hospitality industry and uses text analytics and NPS to reach this goal.
ISSN:17579880
DOI:10.1108/jhtt-04-2021-0116