РазÑабоÑка наклонно-повоÑоÑного кÑонÑÑейна Ñ ÑиÑÑемой маÑинного зÑениÑ: вÑпÑÑÐºÐ½Ð°Ñ ÐºÐ²Ð°Ð»Ð¸ÑикаÑÐ¸Ð¾Ð½Ð½Ð°Ñ ÑабоÑа бакалавÑа
Uloženo v:
| Název: | РазÑабоÑка наклонно-повоÑоÑного кÑонÑÑейна Ñ ÑиÑÑемой маÑинного зÑениÑ: вÑпÑÑÐºÐ½Ð°Ñ ÐºÐ²Ð°Ð»Ð¸ÑикаÑÐ¸Ð¾Ð½Ð½Ð°Ñ ÑабоÑа бакалавÑа |
|---|---|
| Informace o vydavateli: | СанкÑ-ÐеÑеÑбÑÑгÑкий полиÑÐµÑ Ð½Ð¸ÑеÑкий ÑнивеÑÑиÑÐµÑ ÐеÑÑа Ðеликого, 2024. |
| Rok vydání: | 2024 |
| Témata: | 4. Education, задаÑа деÑекÑии, ÑаÑпознавание кодов, DataMatrix codes, code recognition, YOLO, нейÑоннÑе ÑеÑи, object detection, двÑмеÑнÑе маÑÑиÑнÑе ÑÑÑÐ¸Ñ -кодÑ, neural networks, 7. Clean energy |
| Popis: | Ð¦ÐµÐ»Ñ ÑабоÑÑ: ÑазÑабоÑаÑÑ Ð°Ð»Ð³Ð¾ÑиÑм Ñ Ð¿Ñименением глÑбокиÑ
нейÑоннÑÑ
ÑеÑей Ð´Ð»Ñ ÑлÑÑÑенного обнаÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¸ декодиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ
маÑÑиÑнÑÑ
кодов. ÐадаÑи, коÑоÑÑе ÑеÑалиÑÑ Ð² Ñ
оде иÑÑледованиÑ: 1. анализ ÑÑÑеÑÑвÑÑÑиÑ
подÑ
одов к ÑаÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ
маÑÑиÑнÑÑ
ÑÑÑиÑ
-кодов; 2. подгоÑовка обÑÑаÑÑего даÑаÑеÑа и обÑÑение нейÑонной ÑеÑи Ð´Ð»Ñ Ð»Ð¾ÐºÐ°Ð»Ð¸Ð·Ð°Ñии двÑмеÑнÑÑ
маÑÑиÑнÑÑ
кодов; 3. ÑазÑабоÑка аÑÑ
иÑекÑÑÑÑ ÑиÑÑÐµÐ¼Ñ ÑаÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ
маÑÑиÑнÑÑ
кодов и ее пÑогÑÐ°Ð¼Ð¼Ð½Ð°Ñ ÑеализаÑÐ¸Ñ Ð½Ð° C++; 4. ÑкÑпеÑименÑалÑÐ½Ð°Ñ Ð¾Ñенка каÑеÑÑва ÑабоÑÑ ÑиÑÑемÑ. Ð Ñ
оде ÑабоÑÑ Ð±Ñл пÑоведен анализ ÑÑÑеÑÑвÑÑÑиÑ
подÑ
одов обнаÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¸ декодиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ
маÑÑиÑнÑÑ
ÑÑÑиÑ
-кодов, ÑÑо позволило вÑ-ÑвиÑÑ Ð¾ÑновнÑе пÑÐ¾Ð±Ð»ÐµÐ¼Ñ Ð¸ недоÑÑаÑки ÑÑÑеÑÑвÑÑÑиÑ
меÑодов. Также бÑли обÑÑÐµÐ½Ñ Ð¼Ð¾Ð´ÐµÐ»Ð¸ нейÑонной ÑеÑи на ÑобÑанном набоÑе даннÑÑ
. ÐÑла ÑазÑабоÑана аÑÑ
иÑекÑÑÑа ÑиÑÑÐµÐ¼Ñ ÑаÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ
маÑÑиÑнÑÑ
кодов, а впоÑледÑÑвии ÑÑпеÑно Ñеализована на ÑзÑке пÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ C++. ÐолÑÑеннÑе ÑезÑлÑÑаÑÑ Ð¼Ð¾Ð³ÑÑ Ð±ÑÑÑ Ð¸ÑполÑÐ·Ð¾Ð²Ð°Ð½Ñ Ð² ÑиÑÑемаÑ
авÑомаÑиÑеÑкой иденÑиÑикаÑии и ÑбоÑа даннÑÑ
на конвейеÑаÑ
и в ÑиÑÑемаÑ
ÑеÑ
ниÑеÑкого зÑÐµÐ½Ð¸Ñ Ð¼Ð¾Ð±Ð¸Ð»ÑнÑÑ
ÑобоÑов Ñ Ð±Ð¾Ð»ÑÑей ÑоÑноÑÑÑÑ Ð¸ Ñ ÐºÐ¾Ð½ÑÑолиÑÑемой ÑкоÑоÑÑÑÑ Ð² ÑÑавнении Ñ ÑÑÑеÑÑвÑÑÑими ÑеÑениÑми. The purpose of the graduate qualification work: to design an algorithm for im-proved detection and decoding of DataMatrix codes using deep neural networks. Problems that were solved during the study: 1. analysis of existing approaches to recognition of DataMatrix codes; 2. preparation of a dataset and training of a neural network for detection of DataMatrix codes; 3. designing of the architecture of a DataMatrix codes recognition system and its software implementation in C++; 4. experimental assessment of the quality of the system. In the course of the work, an analysis of existing approaches to detection and decoding of DataMatrix codes was carried out, which made it possible to identify the main problems and shortcomings of existing methods. Moreover, neural network models were trained on the collected data set. The architecture of a DataMatrix codes recognition system was developed and successfully implemented in the C++ programming language. The results obtained can be used in systems for automatic identification and data collection on conveyors and in computer vision systems for mobile robots with great-er accuracy and at a controlled speed in comparison with existing solutions. |
| Druh dokumentu: | Other literature type |
| Jazyk: | Russian |
| DOI: | 10.18720/spbpu/3/2024/vr/vr24-1771 |
| Přístupové číslo: | edsair.doi...........b53759a5dca5011246d6596d4a9d5615 |
| Databáze: | OpenAIRE |
| Abstrakt: | Ð¦ÐµÐ»Ñ ÑабоÑÑ: ÑазÑабоÑаÑÑ Ð°Ð»Ð³Ð¾ÑиÑм Ñ Ð¿Ñименением глÑÐ±Ð¾ÐºÐ¸Ñ Ð½ÐµÐ¹ÑоннÑÑ ÑеÑей Ð´Ð»Ñ ÑлÑÑÑенного обнаÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¸ декодиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ Ð¼Ð°ÑÑиÑнÑÑ ÐºÐ¾Ð´Ð¾Ð². ÐадаÑи, коÑоÑÑе ÑеÑалиÑÑ Ð² Ñ Ð¾Ð´Ðµ иÑÑледованиÑ: 1. анализ ÑÑÑеÑÑвÑÑÑÐ¸Ñ Ð¿Ð¾Ð´Ñ Ð¾Ð´Ð¾Ð² к ÑаÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ Ð¼Ð°ÑÑиÑнÑÑ ÑÑÑÐ¸Ñ -кодов; 2. подгоÑовка обÑÑаÑÑего даÑаÑеÑа и обÑÑение нейÑонной ÑеÑи Ð´Ð»Ñ Ð»Ð¾ÐºÐ°Ð»Ð¸Ð·Ð°Ñии двÑмеÑнÑÑ Ð¼Ð°ÑÑиÑнÑÑ ÐºÐ¾Ð´Ð¾Ð²; 3. ÑазÑабоÑка аÑÑ Ð¸ÑекÑÑÑÑ ÑиÑÑÐµÐ¼Ñ ÑаÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ Ð¼Ð°ÑÑиÑнÑÑ ÐºÐ¾Ð´Ð¾Ð² и ее пÑогÑÐ°Ð¼Ð¼Ð½Ð°Ñ ÑеализаÑÐ¸Ñ Ð½Ð° C++; 4. ÑкÑпеÑименÑалÑÐ½Ð°Ñ Ð¾Ñенка каÑеÑÑва ÑабоÑÑ ÑиÑÑемÑ. Ð Ñ Ð¾Ð´Ðµ ÑабоÑÑ Ð±Ñл пÑоведен анализ ÑÑÑеÑÑвÑÑÑÐ¸Ñ Ð¿Ð¾Ð´Ñ Ð¾Ð´Ð¾Ð² обнаÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¸ декодиÑÐ¾Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ Ð¼Ð°ÑÑиÑнÑÑ ÑÑÑÐ¸Ñ -кодов, ÑÑо позволило вÑ-ÑвиÑÑ Ð¾ÑновнÑе пÑÐ¾Ð±Ð»ÐµÐ¼Ñ Ð¸ недоÑÑаÑки ÑÑÑеÑÑвÑÑÑÐ¸Ñ Ð¼ÐµÑодов. Также бÑли обÑÑÐµÐ½Ñ Ð¼Ð¾Ð´ÐµÐ»Ð¸ нейÑонной ÑеÑи на ÑобÑанном набоÑе даннÑÑ . ÐÑла ÑазÑабоÑана аÑÑ Ð¸ÑекÑÑÑа ÑиÑÑÐµÐ¼Ñ ÑаÑÐ¿Ð¾Ð·Ð½Ð°Ð²Ð°Ð½Ð¸Ñ Ð´Ð²ÑмеÑнÑÑ Ð¼Ð°ÑÑиÑнÑÑ ÐºÐ¾Ð´Ð¾Ð², а впоÑледÑÑвии ÑÑпеÑно Ñеализована на ÑзÑке пÑогÑаммиÑÐ¾Ð²Ð°Ð½Ð¸Ñ C++. ÐолÑÑеннÑе ÑезÑлÑÑаÑÑ Ð¼Ð¾Ð³ÑÑ Ð±ÑÑÑ Ð¸ÑполÑÐ·Ð¾Ð²Ð°Ð½Ñ Ð² ÑиÑÑÐµÐ¼Ð°Ñ Ð°Ð²ÑомаÑиÑеÑкой иденÑиÑикаÑии и ÑбоÑа даннÑÑ Ð½Ð° конвейеÑÐ°Ñ Ð¸ в ÑиÑÑÐµÐ¼Ð°Ñ ÑÐµÑ Ð½Ð¸ÑеÑкого зÑÐµÐ½Ð¸Ñ Ð¼Ð¾Ð±Ð¸Ð»ÑнÑÑ ÑобоÑов Ñ Ð±Ð¾Ð»ÑÑей ÑоÑноÑÑÑÑ Ð¸ Ñ ÐºÐ¾Ð½ÑÑолиÑÑемой ÑкоÑоÑÑÑÑ Ð² ÑÑавнении Ñ ÑÑÑеÑÑвÑÑÑими ÑеÑениÑми.<br />The purpose of the graduate qualification work: to design an algorithm for im-proved detection and decoding of DataMatrix codes using deep neural networks. Problems that were solved during the study: 1. analysis of existing approaches to recognition of DataMatrix codes; 2. preparation of a dataset and training of a neural network for detection of DataMatrix codes; 3. designing of the architecture of a DataMatrix codes recognition system and its software implementation in C++; 4. experimental assessment of the quality of the system. In the course of the work, an analysis of existing approaches to detection and decoding of DataMatrix codes was carried out, which made it possible to identify the main problems and shortcomings of existing methods. Moreover, neural network models were trained on the collected data set. The architecture of a DataMatrix codes recognition system was developed and successfully implemented in the C++ programming language. The results obtained can be used in systems for automatic identification and data collection on conveyors and in computer vision systems for mobile robots with great-er accuracy and at a controlled speed in comparison with existing solutions. |
|---|---|
| DOI: | 10.18720/spbpu/3/2024/vr/vr24-1771 |
Nájsť tento článok vo Web of Science