A stochastic programming model for the tertiary control of microgrids

Gespeichert in:
Bibliographische Detailangaben
Titel: A stochastic programming model for the tertiary control of microgrids
Autoren: Citores Martinez, Leire
Weitere Verfasser: Heredia, F.-Javier (Francisco Javier), Corchero García, Cristina
Quelle: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Verlagsinformationen: Universitat Politècnica de Catalunya, 2014.
Publikationsjahr: 2014
Schlagwörter: Classificació AMS::90 Operations research, Energy system optimization, Programming (Mathematics), Microgrid, mathematical programming::90C Mathematical programming, Programació (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització, Stochastic programming, 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, Matemàtiques i estadística::Investigació operativa::Optimització [Àrees temàtiques de la UPC], Scenario reduction
Beschreibung: In this thesis a scenario-based two-stage stochastic programming model is proposed to solve a microgrid's tertiary control optimization problem taking into account some renewable energy resource s uncertainty as well uncertain energy deviation prices in the electricity market. Scenario generation methods for wind speed realizations are also studied. Results show that the introduction of stochastic programming represents an improvement over a deterministic model.
Publikationsart: Master thesis
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/2099.1/23235
https://hdl.handle.net/2099.1/23235
Dokumentencode: edsair.dedup.wf.002..d84b1825d5c484789a6be7dc4e537f8c
Datenbank: OpenAIRE
Beschreibung
Abstract:In this thesis a scenario-based two-stage stochastic programming model is proposed to solve a microgrid's tertiary control optimization problem taking into account some renewable energy resource s uncertainty as well uncertain energy deviation prices in the electricity market. Scenario generation methods for wind speed realizations are also studied. Results show that the introduction of stochastic programming represents an improvement over a deterministic model.