A stochastic programming model for the tertiary control of microgrids

Uloženo v:
Podrobná bibliografie
Název: A stochastic programming model for the tertiary control of microgrids
Autoři: Citores Martinez, Leire
Přispěvatelé: Heredia, F.-Javier (Francisco Javier), Corchero García, Cristina
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Informace o vydavateli: Universitat Politècnica de Catalunya, 2014.
Rok vydání: 2014
Témata: Classificació AMS::90 Operations research, Energy system optimization, Programming (Mathematics), Microgrid, mathematical programming::90C Mathematical programming, Programació (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització, Stochastic programming, 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, Matemàtiques i estadística::Investigació operativa::Optimització [Àrees temàtiques de la UPC], Scenario reduction
Popis: In this thesis a scenario-based two-stage stochastic programming model is proposed to solve a microgrid's tertiary control optimization problem taking into account some renewable energy resource s uncertainty as well uncertain energy deviation prices in the electricity market. Scenario generation methods for wind speed realizations are also studied. Results show that the introduction of stochastic programming represents an improvement over a deterministic model.
Druh dokumentu: Master thesis
Popis souboru: application/pdf
Přístupová URL adresa: http://hdl.handle.net/2099.1/23235
https://hdl.handle.net/2099.1/23235
Přístupové číslo: edsair.dedup.wf.002..d84b1825d5c484789a6be7dc4e537f8c
Databáze: OpenAIRE
Popis
Abstrakt:In this thesis a scenario-based two-stage stochastic programming model is proposed to solve a microgrid's tertiary control optimization problem taking into account some renewable energy resource s uncertainty as well uncertain energy deviation prices in the electricity market. Scenario generation methods for wind speed realizations are also studied. Results show that the introduction of stochastic programming represents an improvement over a deterministic model.