Gromov compactness theorem for pseudoholomorphic curves

Gespeichert in:
Bibliographische Detailangaben
Titel: Gromov compactness theorem for pseudoholomorphic curves
Autoren: Sáez Calvo, Carles
Weitere Verfasser: Mundet i Riera, Ignasi
Quelle: Dipòsit Digital de la UB
Universidad de Barcelona
Màster Oficial-Matemàtica Avançada
instname
Verlagsinformationen: 2014.
Publikationsjahr: 2014
Schlagwörter: Master's theses, Riemannian manifolds, Geometria diferencial, Varietats de Riemann, Differential geometry, Master's thesis, Treballs de fi de màster
Beschreibung: The main goal of this master thesis is to give a self-contained proof of the Gromov compactness theorem for pseudoholomorphic curves and the non-squeezing theorem in symplectic topology. Pseudoholomorphic curves are smooth maps from a Riemann surface into an almost complex manifold that respect the almost complex structures. If the target manifold is a complex manifold, we recover the notion of holomorphic maps, so pseudoholomorphic maps can be seen as the generalization of holomorphic maps to the almost complex setting. Pseudoholomorphic curves were introduced by Gromov in a ground-breaking paper published in 1985, [Gro]. Since then, they have become one of the main tools in the field of symplectic topology.
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2014, Director: Ignasi Mundet i Riera
Publikationsart: Master thesis
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.net/2445/64126
https://hdl.handle.net/2445/64126
Rights: CC BY SA
Dokumentencode: edsair.dedup.wf.002..c634b8305e28f9b4432c97a9ea20e7cd
Datenbank: OpenAIRE
Beschreibung
Abstract:The main goal of this master thesis is to give a self-contained proof of the Gromov compactness theorem for pseudoholomorphic curves and the non-squeezing theorem in symplectic topology. Pseudoholomorphic curves are smooth maps from a Riemann surface into an almost complex manifold that respect the almost complex structures. If the target manifold is a complex manifold, we recover the notion of holomorphic maps, so pseudoholomorphic maps can be seen as the generalization of holomorphic maps to the almost complex setting. Pseudoholomorphic curves were introduced by Gromov in a ground-breaking paper published in 1985, [Gro]. Since then, they have become one of the main tools in the field of symplectic topology.<br />Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2014, Director: Ignasi Mundet i Riera